These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38429160)

  • 1. Vitamin K-dependent carboxylation in β-cells and diabetes.
    Lacombe J; Ferron M
    Trends Endocrinol Metab; 2024 Jul; 35(7):661-673. PubMed ID: 38429160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin K-dependent carboxylation regulates Ca
    Lacombe J; Guo K; Bonneau J; Faubert D; Gioanni F; Vivoli A; Muir SM; Hezzaz S; Poitout V; Ferron M
    Cell Rep; 2023 May; 42(5):112500. PubMed ID: 37171959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin K-dependent carboxylation of the carboxylase.
    Berkner KL; Pudota BN
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):466-71. PubMed ID: 9435215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin K-dependent gamma-glutamylcarboxylation: an ancient posttranslational modification.
    Bandyopadhyay PK
    Vitam Horm; 2008; 78():157-84. PubMed ID: 18374194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the propeptide and gamma-glutamic acid domain of factor IX for in vitro carboxylation by the vitamin K-dependent carboxylase.
    Stanley TB; Wu SM; Houben RJ; Mutucumarana VP; Stafford DW
    Biochemistry; 1998 Sep; 37(38):13262-8. PubMed ID: 9748333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-site-specificity of the vitamin K-dependent carboxylase: in vitro carboxylation of des-gamma-carboxylated bone Gla protein and Des-gamma-carboxylated pro bone Gla protein.
    Benton ME; Price PA; Suttie JW
    Biochemistry; 1995 Jul; 34(29):9541-51. PubMed ID: 7626624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gamma-carboxylation recognition site is sufficient to direct vitamin K-dependent carboxylation on an adjacent glutamate-rich region of thrombin in a propeptide-thrombin chimera.
    Furie BC; Ratcliffe JV; Tward J; Jorgensen MJ; Blaszkowsky LS; DiMichele D; Furie B
    J Biol Chem; 1997 Nov; 272(45):28258-62. PubMed ID: 9353278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vitamin K-dependent carboxylase.
    Berkner KL
    Annu Rev Nutr; 2005; 25():127-49. PubMed ID: 16011462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation.
    Rishavy MA; Berkner KL
    Biochemistry; 2008 Sep; 47(37):9836-46. PubMed ID: 18717596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescent method to determine vitamin K-dependent gamma-glutamyl carboxylase activity.
    Kaesler N; Schettgen T; Mutucumarana VP; Brandenburg V; Jahnen-Dechent W; Schurgers LJ; Krüger T
    Anal Biochem; 2012 Feb; 421(2):411-6. PubMed ID: 22210513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the factor IX gamma-carboxyglutamic acid domain to the vitamin K-dependent gamma-glutamyl carboxylase active site induces an allosteric effect that may ensure processive carboxylation and regulate the release of carboxylated product.
    Lin PJ; Straight DL; Stafford DW
    J Biol Chem; 2004 Feb; 279(8):6560-6. PubMed ID: 14660587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Gla-containing proteins].
    Okano T
    Clin Calcium; 2014 Feb; 24(2):241-8. PubMed ID: 24473357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Sane DC; Hutson SM
    Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase.
    Rishavy MA; Berkner KL
    Adv Nutr; 2012 Mar; 3(2):135-48. PubMed ID: 22516721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin K-dependent carboxylation.
    Berkner KL
    Vitam Horm; 2008; 78():131-56. PubMed ID: 18374193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vitamin K-dependent carboxylase.
    Berkner KL
    J Nutr; 2000 Aug; 130(8):1877-80. PubMed ID: 10917896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warfarin and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Hutson SM
    Trends Mol Med; 2004 Jul; 10(7):299-302. PubMed ID: 15242675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.