These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38429608)

  • 1. How do animals weigh conflicting information about reward sources over time? Comparing dynamic averaging models.
    Van Allsburg J; Shahan TA
    Anim Cogn; 2024 Mar; 27(1):11. PubMed ID: 38429608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Male rats play a repeated donation game.
    Li G; Wood RI
    Physiol Behav; 2017 May; 174():95-103. PubMed ID: 28302575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral striatal lesions disrupt performance in an operant delayed reinforcement task in rats.
    Dunnett SB; Heuer A; Lelos M; Brooks SP; Rosser AE
    Brain Res Bull; 2012 Jun; 88(2-3):251-60. PubMed ID: 21515345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pro-social preference in an automated operant two-choice reward task under different housing conditions: Exploratory studies on pro-social decision making.
    Kentrop J; Kalamari A; Danesi CH; Kentrop JJ; van IJzendoorn MH; Bakermans-Kranenburg MJ; Joƫls M; van der Veen R
    Dev Cogn Neurosci; 2020 Oct; 45():100827. PubMed ID: 32739841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus accumbens shell moderates preference bias during voluntary choice behavior.
    Jang H; Jung K; Jeong J; Park SK; Kralik JD; Jeong J
    Soc Cogn Affect Neurosci; 2017 Sep; 12(9):1428-1436. PubMed ID: 28992274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesions of the nucleus accumbens core modulate development of matching behavior.
    Kai N; Tsutsui Y; Kobayashi K
    BMC Neurosci; 2014 Apr; 15():55. PubMed ID: 24886021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward shifts in forced-choice and free-choice autoshaping with rats.
    Conrad SE; Papini MR
    J Exp Psychol Anim Learn Cogn; 2018 Oct; 44(4):422-440. PubMed ID: 30407066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent variable-interval variable-ratio schedules in a dynamic choice environment.
    Bell MC; Baum WM
    J Exp Anal Behav; 2017 Nov; 108(3):367-397. PubMed ID: 29110297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paradoxical choice in rats: Subjective valuation and mechanism of choice.
    Ojeda A; Murphy RA; Kacelnik A
    Behav Processes; 2018 Jul; 152():73-80. PubMed ID: 29608942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy.
    Schweimer J; Hauber W
    Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual differences in choice (in)flexibility but not impulsivity in the common marmoset: an automated, operant-behavior choice task.
    Adriani W; Romani C; Manciocco A; Vitale A; Laviola G
    Behav Brain Res; 2013 Nov; 256():554-63. PubMed ID: 24016838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemogenetic Modulation and Single-Photon Calcium Imaging in Anterior Cingulate Cortex Reveal a Mechanism for Effort-Based Decisions.
    Hart EE; Blair GJ; O'Dell TJ; Blair HT; Izquierdo A
    J Neurosci; 2020 Jul; 40(29):5628-5643. PubMed ID: 32527984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Momentary maximizing and optimal foraging theories of performance on concurrent VR schedules.
    MacDonall JS; Goodell J; Juliano A
    Behav Processes; 2006 Jun; 72(3):283-99. PubMed ID: 16631321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat.
    Mar AC; Walker AL; Theobald DE; Eagle DM; Robbins TW
    J Neurosci; 2011 Apr; 31(17):6398-404. PubMed ID: 21525280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of impulsive choice: III. The role of reward processes.
    Marshall AT; Kirkpatrick K
    Behav Processes; 2016 Feb; 123():134-48. PubMed ID: 26506254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delays to Reward Delivery Enhance the Preference for an Initially Less Desirable Option: Role for the Basolateral Amygdala and Retrosplenial Cortex.
    Lefner MJ; Magnon AP; Gutierrez JM; Lopez MR; Wanat MJ
    J Neurosci; 2021 Sep; 41(35):7461-7478. PubMed ID: 34315810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.
    McMurray MS; Conway SM; Roitman JD
    eNeuro; 2017; 4(2):. PubMed ID: 28466068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value.
    Winter S; Dieckmann M; Schwabe K
    Behav Brain Res; 2009 Mar; 198(1):206-13. PubMed ID: 19041903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent palatable food preference in rats with a history of limited and extended access to methamphetamine self-administration.
    Caprioli D; Zeric T; Thorndike EB; Venniro M
    Addict Biol; 2015 Sep; 20(5):913-26. PubMed ID: 25582886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice.
    El-Ghundi M; O'Dowd BF; Erclik M; George SR
    Eur J Neurosci; 2003 Feb; 17(4):851-62. PubMed ID: 12603275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.