These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38429666)
41. AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRI. Shi W; Xu H; Sun C; Sun J; Li Y; Xu X; Zheng T; Zhang Y; Wang G; Wu D IEEE Trans Med Imaging; 2023 Jan; 42(1):209-219. PubMed ID: 36129858 [TBL] [Abstract][Full Text] [Related]
42. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
43. A joint brain extraction and image quality assessment framework for fetal brain MRI slices. Zhang W; Zhang X; Li L; Liao L; Zhao F; Zhong T; Pei Y; Xu X; Yang C; Zhang H; Li G Neuroimage; 2024 Apr; 290():120560. PubMed ID: 38431181 [TBL] [Abstract][Full Text] [Related]
44. An automatic pipeline for atlas-based fetal and neonatal brain segmentation and analysis. Urru A; Nakaki A; Benkarim O; Crovetto F; Segalés L; Comte V; Hahner N; Eixarch E; Gratacos E; Crispi F; Piella G; González Ballester MA Comput Methods Programs Biomed; 2023 Mar; 230():107334. PubMed ID: 36682108 [TBL] [Abstract][Full Text] [Related]
45. Utility of multiplanar and three-dimensional reconstructions from computed tomography performed for maternal indications for visualizing fetal anatomy and estimating gestational age. Taneja R; Dighe M; Kanal KM; Richardson ML; Mitsumori LM; Dubinsky TJ J Comput Assist Tomogr; 2011; 35(4):446-53. PubMed ID: 21765299 [TBL] [Abstract][Full Text] [Related]
46. Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes. Turkbey B; Fotin SV; Huang RJ; Yin Y; Daar D; Aras O; Bernardo M; Garvey BE; Weaver J; Haldankar H; Muradyan N; Merino MJ; Pinto PA; Periaswamy S; Choyke PL AJR Am J Roentgenol; 2013 Nov; 201(5):W720-9. PubMed ID: 24147502 [TBL] [Abstract][Full Text] [Related]
47. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622 [TBL] [Abstract][Full Text] [Related]
48. Reconstruction of the fetus face from three-dimensional ultrasound using a newborn face statistical shape model. Alomar A; Morales A; Vellvé K; Porras AR; Crispi F; Linguraru MG; Piella G; Sukno F Comput Methods Programs Biomed; 2022 Jun; 221():106893. PubMed ID: 35660764 [TBL] [Abstract][Full Text] [Related]
49. Three-dimensional models of the segmented human fetal brain generated by magnetic resonance imaging. Yamaguchi Y; Miyazaki R; Kamatani M; Uwabe C; Makishima H; Nagai M; Katsube M; Yamamoto A; Imai H; Kose K; Togashi K; Yamada S Congenit Anom (Kyoto); 2018 Mar; 58(2):48-55. PubMed ID: 28493478 [TBL] [Abstract][Full Text] [Related]
50. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
51. Brain volume segmentation in newborn infants using multi-modal MRI with a low inter-slice resolution. Despotovic I; Vansteenkiste E; Philips W Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5038-41. PubMed ID: 21096688 [TBL] [Abstract][Full Text] [Related]
52. Quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images. Claudia C; Farida C; Guy G; Marie-Claude M; Carl-Eric A BMC Med Imaging; 2012 Aug; 12():26. PubMed ID: 22856667 [TBL] [Abstract][Full Text] [Related]
53. MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. Jiang S; Xue H; Glover A; Rutherford M; Rueckert D; Hajnal JV IEEE Trans Med Imaging; 2007 Jul; 26(7):967-80. PubMed ID: 17649910 [TBL] [Abstract][Full Text] [Related]
54. PETS-Nets: Joint Pose Estimation and Tissue Segmentation of Fetal Brains Using Anatomy-Guided Networks. Pei Y; Zhao F; Zhong T; Ma L; Liao L; Wu Z; Wang L; Zhang H; Wang L; Li G IEEE Trans Med Imaging; 2024 Mar; 43(3):1006-1017. PubMed ID: 37874705 [TBL] [Abstract][Full Text] [Related]
55. Feasibility of a fetal anatomy 3D atlas by computer-assisted anatomic dissection. Balaya V; Guimiot F; Bruzzi M; El Batti S; Guedon A; Lhuaire M; Chevallier JM; Douard R; Uhl JF J Gynecol Obstet Hum Reprod; 2020 Nov; 49(9):101880. PubMed ID: 32755668 [TBL] [Abstract][Full Text] [Related]
56. Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Habas PA; Kim K; Rousseau F; Glenn OA; Barkovich AJ; Studholme C Hum Brain Mapp; 2010 Sep; 31(9):1348-58. PubMed ID: 20108226 [TBL] [Abstract][Full Text] [Related]
57. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods. van der Kleij LA; de Bresser J; Hendrikse J; Siero JCW; Petersen ET; De Vis JB PLoS One; 2018; 13(4):e0196119. PubMed ID: 29672584 [TBL] [Abstract][Full Text] [Related]
58. PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI. Alansary A; Rajchl M; McDonagh SG; Murgasova M; Damodaram M; Lloyd DFA; Davidson A; Rutherford M; Hajnal JV; Rueckert D; Kainz B IEEE Trans Med Imaging; 2017 Oct; 36(10):2031-2044. PubMed ID: 28880160 [TBL] [Abstract][Full Text] [Related]
59. The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy. Li P; Liu P; Chen C; Duan H; Qiao W; Ognami OH Eur Radiol; 2018 Nov; 28(11):4561-4569. PubMed ID: 29728818 [TBL] [Abstract][Full Text] [Related]
60. 3-D Reconstruction in Canonical Co-Ordinate Space From Arbitrarily Oriented 2-D Images. Hou B; Khanal B; Alansary A; McDonagh S; Davidson A; Rutherford M; Hajnal JV; Rueckert D; Glocker B; Kainz B IEEE Trans Med Imaging; 2018 Aug; 37(8):1737-1750. PubMed ID: 29994453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]