BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38429759)

  • 1. Epigenetic remodeling to improve the efficacy of immunotherapy in human glioblastoma: pre-clinical evidence for development of new immunotherapy approaches.
    Lofiego MF; Piazzini F; Caruso FP; Marzani F; Solmonese L; Bello E; Celesti F; Costa MC; Noviello T; Mortarini R; Anichini A; Ceccarelli M; Coral S; Di Giacomo AM; Maio M; Covre A;
    J Transl Med; 2024 Mar; 22(1):223. PubMed ID: 38429759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy.
    Anichini A; Molla A; Nicolini G; Perotti VE; Sgambelluri F; Covre A; Fazio C; Lofiego MF; Di Giacomo AM; Coral S; Manca A; Sini MC; Pisano M; Noviello T; Caruso F; Brich S; Pruneri G; Maurichi A; Santinami M; Ceccarelli M; Palmieri G; Maio M; Mortarini R;
    J Exp Clin Cancer Res; 2022 Nov; 41(1):325. PubMed ID: 36397155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy.
    Lofiego MF; Cannito S; Fazio C; Piazzini F; Cutaia O; Solmonese L; Marzani F; Chiarucci C; Di Giacomo AM; Calabrò L; Coral S; Maio M; Covre A; On Behalf Of The EPigenetic Immune-Oncology Consortium Airc Epica Investigators
    Epigenomes; 2021 Dec; 5(4):. PubMed ID: 34968251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acid Metabolic Signaling Pathway Alternation Predict Prognosis of Immune Checkpoint Inhibitors in Glioblastoma.
    Liu R; Liang W; Hua Q; Wu L; Wang X; Li Q; Zhong F; Li B; Qiu Z
    Front Immunol; 2022; 13():819515. PubMed ID: 35251000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells.
    Liu G; Ying H; Zeng G; Wheeler CJ; Black KL; Yu JS
    Cancer Res; 2004 Jul; 64(14):4980-6. PubMed ID: 15256472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis based on the cuproptosis-related genes identifies ferredoxin 1 as an immune regulator and therapeutic target for glioblastoma.
    Dai L; Zhou P; Lyu L; Jiang S
    BMC Cancer; 2023 Dec; 23(1):1249. PubMed ID: 38114959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme.
    Li Q; Dong C; Cui J; Wang Y; Hong X
    J Exp Clin Cancer Res; 2018 Oct; 37(1):265. PubMed ID: 30376874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunomodulatory Properties of DNA Hypomethylating Agents: Selecting the Optimal Epigenetic Partner for Cancer Immunotherapy.
    Fazio C; Covre A; Cutaia O; Lofiego MF; Tunici P; Chiarucci C; Cannito S; Giacobini G; Lowder JN; Ferraldeschi R; Taverna P; Di Giacomo AM; Coral S; Maio M
    Front Pharmacol; 2018; 9():1443. PubMed ID: 30581389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival.
    Poli A; Wang J; Domingues O; Planagumà J; Yan T; Rygh CB; Skaftnesmo KO; Thorsen F; McCormack E; Hentges F; Pedersen PH; Zimmer J; Enger PØ; Chekenya M
    Oncotarget; 2013 Sep; 4(9):1527-46. PubMed ID: 24127551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma.
    Xia L; Liu JY; Zheng ZZ; Chen YJ; Ding JC; Hu YH; Hu GS; Xia NS; Liu W
    Mol Ther; 2021 Oct; 29(10):3011-3026. PubMed ID: 34058385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive value of CCL2 in the prognosis and immunotherapy response of glioblastoma multiforme.
    Deng L; Ren J; Li B; Wang Y; Jiang N; Wang Y; Cui H
    BMC Genomics; 2023 Dec; 24(1):746. PubMed ID: 38057698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme.
    Polivka J; Polivka J; Holubec L; Kubikova T; Priban V; Hes O; Pivovarcikova K; Treskova I
    Anticancer Res; 2017 Jan; 37(1):21-33. PubMed ID: 28011470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Analysis of the Tumor Immune Microenvironment Landscape in Glioblastoma Reveals Tumor Heterogeneity and Implications for Prognosis and Immunotherapy.
    Zhao R; Pan Z; Li B; Zhao S; Zhang S; Qi Y; Qiu J; Gao Z; Fan Y; Guo Q; Qiu W; Wang S; Wang Q; Zhang P; Guo X; Deng L; Xue H; Li G
    Front Immunol; 2022; 13():820673. PubMed ID: 35309323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy and Epigenetic Pathway Modulation in Glioblastoma Multiforme.
    Chin C; Lunking ES; de la Fuente M; Ayad NG
    Front Oncol; 2018; 8():521. PubMed ID: 30483476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation a prognostic model based on natural killer T cells marker genes for predicting prognosis and characterizing immune status in glioblastoma through integrated analysis of single-cell and bulk RNA sequencing.
    Hu J; Xu L; Fu W; Sun Y; Wang N; Zhang J; Yang C; Zhang X; Zhou Y; Wang R; Zhang H; Mou R; Du X; Li X; Hu S; Xie R
    Funct Integr Genomics; 2023 Aug; 23(3):286. PubMed ID: 37650991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic mechanisms in glioblastoma multiforme.
    Nagarajan RP; Costello JF
    Semin Cancer Biol; 2009 Jun; 19(3):188-97. PubMed ID: 19429483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment.
    Verdugo E; Puerto I; Medina MÁ
    Cancer Commun (Lond); 2022 Nov; 42(11):1083-1111. PubMed ID: 36129048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the role of novel EZH2 inhibitors in primary glioblastoma cell cultures: effects on proliferation, epithelial-mesenchymal transition, migration, and on the pro-inflammatory phenotype.
    Stazi G; Taglieri L; Nicolai A; Romanelli A; Fioravanti R; Morrone S; Sabatino M; Ragno R; Taurone S; Nebbioso M; Carletti R; Artico M; Valente S; Scarpa S; Mai A
    Clin Epigenetics; 2019 Dec; 11(1):173. PubMed ID: 31791385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells.
    Qiu Z; Zhao L; Shen JZ; Liang Z; Wu Q; Yang K; Min L; Gimple RC; Yang Q; Bhargava S; Jin C; Kim C; Hinz D; Dixit D; Bernatchez JA; Prager BC; Zhang G; Dong Z; Lv D; Wang X; Kim LJY; Zhu Z; Jones KA; Zheng Y; Wang X; Siqueira-Neto JL; Chavez L; Fu XD; Spruck C; Rich JN
    Cancer Discov; 2022 Feb; 12(2):502-521. PubMed ID: 34615656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer.
    Luker AJ; Graham LJ; Smith TM; Camarena C; Zellner MP; Gilmer JS; Damle SR; Conrad DH; Bear HD; Martin RK
    BMC Immunol; 2020 Feb; 21(1):8. PubMed ID: 32106810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.