These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38429882)

  • 1. Back to the future for drought tolerance.
    Guadarrama-Escobar LM; Hunt J; Gurung A; Zarco-Tejada PJ; Shabala S; Camino C; Hernandez P; Pourkheirandish M
    New Phytol; 2024 Apr; 242(2):372-383. PubMed ID: 38429882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat.
    Nehe AS; Foulkes MJ; Ozturk I; Rasheed A; York L; Kefauver SC; Ozdemir F; Morgounov A
    PLoS One; 2021; 16(4):e0242472. PubMed ID: 33819270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research.
    Sallam A; Alqudah AM; Dawood MFA; Baenziger PS; Börner A
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31252573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts.
    Bedada G; Westerbergh A; Müller T; Galkin E; Bdolach E; Moshelion M; Fridman E; Schmid KJ
    BMC Genomics; 2014 Nov; 15(1):995. PubMed ID: 25408241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought and salt tolerances in wild relatives for wheat and barley improvement.
    Nevo E; Chen G
    Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evidence for adaptive evolution of drought tolerance in wild cereals.
    Wang Y; Chen G; Zeng F; Han Z; Qiu CW; Zeng M; Yang Z; Xu F; Wu D; Deng F; Xu S; Chater C; Korol A; Shabala S; Wu F; Franks P; Nevo E; Chen ZH
    New Phytol; 2023 Jan; 237(2):497-514. PubMed ID: 36266957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive in silico analysis of the underutilized crop tef (Eragrostis tef (Zucc.) Trotter) genome reveals drought tolerance signatures.
    Bekele-Alemu A; Ligaba-Osena A
    BMC Plant Biol; 2023 Oct; 23(1):506. PubMed ID: 37865758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought stress in maize: stress perception to molecular response and strategies for its improvement.
    Singh A; Pandey H; Pandey S; Lal D; Chauhan D; Aparna ; Antre SH; B S; Kumar A
    Funct Integr Genomics; 2023 Sep; 23(4):296. PubMed ID: 37697159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marker-trait association for grain weight of spring barley in well-watered and drought environments.
    Sallam A; Amro A; Elakhdar A; Dawood MFA; Moursi YS; Baenziger PS
    Mol Biol Rep; 2019 Jun; 46(3):2907-2918. PubMed ID: 30904979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance.
    Wu X; Feng H; Wu D; Yan S; Zhang P; Wang W; Zhang J; Ye J; Dai G; Fan Y; Li W; Song B; Geng Z; Yang W; Chen G; Qin F; Terzaghi W; Stitzer M; Li L; Xiong L; Yan J; Buckler E; Yang W; Dai M
    Genome Biol; 2021 Jun; 22(1):185. PubMed ID: 34162419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley.
    Qiu CW; Ma Y; Liu W; Zhang S; Wang Y; Cai S; Zhang G; Chater CCC; Chen ZH; Wu F
    J Adv Res; 2023 Jul; 49():31-45. PubMed ID: 36170948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M
    BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environment-oriented selection criteria to overcome controversies in breeding for drought resistance in wheat.
    Poggi GM; Corneti S; Aloisi I; Ventura F
    J Plant Physiol; 2023 Jan; 280():153895. PubMed ID: 36529076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant breeding and drought in C3 cereals: what should we breed for?
    Araus JL; Slafer GA; Reynolds MP; Royo C
    Ann Bot; 2002 Jun; 89 Spec No(7):925-40. PubMed ID: 12102518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate-resilient crops: Lessons from xerophytes.
    Chen X; Zhao C; Yun P; Yu M; Zhou M; Chen ZH; Shabala S
    Plant J; 2024 Mar; 117(6):1815-1835. PubMed ID: 37967090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism.
    Qiu CW; Ma Y; Wang QQ; Fu MM; Li C; Wang Y; Wu F
    Plant Physiol; 2023 Aug; 193(1):389-409. PubMed ID: 37300541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network Candidate Genes in Breeding for Drought Tolerant Crops.
    Krannich CT; Maletzki L; Kurowsky C; Horn R
    Int J Mol Sci; 2015 Jul; 16(7):16378-400. PubMed ID: 26193269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat.
    Khadka K; Earl HJ; Raizada MN; Navabi A
    Front Plant Sci; 2020; 11():715. PubMed ID: 32582249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.