BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38429891)

  • 1. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits.
    Ungurianu A; Zanfirescu A; Margină D
    Phytother Res; 2024 May; 38(5):2361-2387. PubMed ID: 38429891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ameliorative properties of quercetin in the treatment of traumatic brain injury: a mechanistic review based on underlying mechanisms.
    Tanhai G; Chahardehi AM; Sohrabi MA; Afshoon M; Saberian P; Pourshams M; Ghasemi D; Motaghi SM; Arefnezhad R; Niknam Z
    Mol Biol Rep; 2024 May; 51(1):695. PubMed ID: 38796674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease.
    Acıkara OB; Karatoprak GŞ; Yücel Ç; Akkol EK; Sobarzo-Sánchez E; Khayatkashani M; Kamal MA; Kashani HRK
    CNS Neurol Disord Drug Targets; 2022; 21(9):795-817. PubMed ID: 34872486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism.
    Cui Z; Zhao X; Amevor FK; Du X; Wang Y; Li D; Shu G; Tian Y; Zhao X
    Front Immunol; 2022; 13():943321. PubMed ID: 35935939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades.
    Abu-Risha SE; Sokar SS; Elzorkany KE; Elsisi AE
    Int Immunopharmacol; 2024 Jun; 134():112240. PubMed ID: 38744177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms.
    Chiang MC; Tsai TY; Wang CJ
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin derivatives: Drug design, development, and biological activities, a review.
    Alizadeh SR; Ebrahimzadeh MA
    Eur J Med Chem; 2022 Feb; 229():114068. PubMed ID: 34971873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin and AMPK: A Dynamic Duo in Alleviating MG-Induced Inflammation via the AMPK/SIRT1/NF-κB Pathway.
    Lu Z; Wang H; Ishfaq M; Han Y; Zhang X; Li X; Wang B; Lu X; Gao B
    Molecules; 2023 Nov; 28(21):. PubMed ID: 37959807
    [No Abstract]   [Full Text] [Related]  

  • 9. Neuroprotective Effects of Quercetin in Alzheimer's Disease.
    Khan H; Ullah H; Aschner M; Cheang WS; Akkol EK
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31905923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More.
    Costa LG; Garrick JM; Roquè PJ; Pellacani C
    Oxid Med Cell Longev; 2016; 2016():2986796. PubMed ID: 26904161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life or death: neuroprotective and anticancer effects of quercetin.
    Dajas F
    J Ethnopharmacol; 2012 Sep; 143(2):383-96. PubMed ID: 22820241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility.
    Tatone C; Di Emidio G; Barbonetti A; Carta G; Luciano AM; Falone S; Amicarelli F
    Hum Reprod Update; 2018 May; 24(3):267-289. PubMed ID: 29447380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin as a systemic chemopreventative agent: structural and functional mechanisms.
    Mendoza EE; Burd R
    Mini Rev Med Chem; 2011 Dec; 11(14):1216-21. PubMed ID: 22070678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage.
    Peng J; Yang Z; Li H; Hao B; Cui D; Shang R; Lv Y; Liu Y; Pu W; Zhang H; He J; Wang X; Wang S
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insights and perspectives involved in neuroprotective action of quercetin.
    Grewal AK; Singh TG; Sharma D; Sharma V; Singh M; Rahman MH; Najda A; Walasek-Janusz M; Kamel M; Albadrani GM; Akhtar MF; Saleem A; Abdel-Daim MM
    Biomed Pharmacother; 2021 Aug; 140():111729. PubMed ID: 34044274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sirtuin modulators: an updated patent review (2012 - 2014).
    Mellini P; Valente S; Mai A
    Expert Opin Ther Pat; 2015 Jan; 25(1):5-15. PubMed ID: 25435179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives.
    Ayaz M; Mosa OF; Nawaz A; Hamdoon AAE; Elkhalifa MEM; Sadiq A; Ullah F; Ahmed A; Kabra A; Khan H; Murthy HCA
    Phytomedicine; 2024 Feb; 124():155272. PubMed ID: 38181530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoids as Sirtuin Modulators.
    Deniz FSŞ; Eren G; Orhan IE
    Curr Top Med Chem; 2022; 22(9):790-805. PubMed ID: 35466876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT1 and SIRT6: The role in aging-related diseases.
    You Y; Liang W
    Biochim Biophys Acta Mol Basis Dis; 2023 Oct; 1869(7):166815. PubMed ID: 37499928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: Role of Nrf2/ HO-1/Keap-1 signaling pathway.
    AbdElrazek DA; Ibrahim MA; Hassan NH; Hassanen EI; Farroh KY; Abass HI
    Neurotoxicology; 2023 Sep; 98():16-28. PubMed ID: 37419146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.