These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38430344)

  • 1. Digital light processing 3D printing of microfluidic devices targeting high-pressure liquid-phase separations.
    Amini A; Themelis T; Ottevaere H; De Vos J; Eeltink S
    Mikrochim Acta; 2024 Mar; 191(3):171. PubMed ID: 38430344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices.
    Amini A; Guijt RM; Themelis T; De Vos J; Eeltink S
    J Chromatogr A; 2023 Mar; 1692():463842. PubMed ID: 36745962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.
    Wouters S; De Vos J; Dores-Sousa JL; Wouters B; Desmet G; Eeltink S
    J Chromatogr A; 2017 Nov; 1523():224-233. PubMed ID: 28619590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Wetting Characteristics of DLP-Based 3D Printing Outcomes under Various Printing Conditions for Microfluidic Device Fabrication.
    Kang JW; Jeon J; Lee JY; Jeon JH; Hong J
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
    Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices.
    Esene JE; Nasman PR; Miner DS; Nordin GP; Woolley AT
    J Chromatogr A; 2023 Sep; 1706():464242. PubMed ID: 37595419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.
    Gupta V; Beirne S; Nesterenko PN; Paull B
    Anal Chem; 2018 Jan; 90(2):1186-1194. PubMed ID: 29231703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed microfluidic valve on PCB for flow control applications using liquid metal.
    Hamza A; Navale A; Song Q; Bhagwat S; Kotz-Helmer F; Pezeshkpour P; Rapp BE
    Biomed Microdevices; 2024 Jan; 26(1):14. PubMed ID: 38289398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Approach to Resin Formulation for 3D Printed Microfluidics.
    Gong H; Beauchamp M; Perry S; Woolley AT; Nordin GP
    RSC Adv; 2015 Dec; 5(129):106621-106632. PubMed ID: 26744624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary-channeled polymer fibers as stationary phases in liquid chromatography separations.
    Marcus RK; Davis WC; Knippel BC; LaMotte L; Hill TA; Perahia D; Jenkins JD
    J Chromatogr A; 2003 Jan; 986(1):17-31. PubMed ID: 12585319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow controllable three-dimensional paper-based microfluidic analytical devices fabricated by 3D printing technology.
    Fu X; Xia B; Ji B; Lei S; Zhou Y
    Anal Chim Acta; 2019 Aug; 1065():64-70. PubMed ID: 31005152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of 3D Printed Models Created by Two Technologies of Printers with Different Designs of Model Base.
    Rungrojwittayakul O; Kan JY; Shiozaki K; Swamidass RS; Goodacre BJ; Goodacre CJ; Lozada JL
    J Prosthodont; 2020 Feb; 29(2):124-128. PubMed ID: 31498957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed extraction devices fabricated from silica particles suspended in acrylate resin.
    Georgiev P; Belka M; Kroll D; Bączek T; Opiełka M; Rutkowska A; Ulenberg S
    J Chromatogr A; 2024 Feb; 1717():464671. PubMed ID: 38278133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer.
    Borrello J; Nasser P; Iatridis J; Costa KD
    Addit Manuf; 2018 Oct; 23():374-380. PubMed ID: 31106119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion.
    Reymus M; Lümkemann N; Stawarczyk B
    Int J Comput Dent; 2019; 22(3):231-237. PubMed ID: 31463487
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.