BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38430346)

  • 1. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India.
    Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL
    Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India.
    Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai.
    Mann R; Gupta A
    Environ Monit Assess; 2023 Nov; 195(12):1534. PubMed ID: 38008879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of vulnerability to flood risk in the Padma River Basin using hydro-morphometric modeling and flood susceptibility mapping.
    Abrar MF; Iman YE; Mustak MB; Pal SK
    Environ Monit Assess; 2024 Jun; 196(7):661. PubMed ID: 38918209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method.
    Chen Y; Wang D; Zhang L; Guo H; Ma J; Gao W
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96001-96018. PubMed ID: 37561303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flood hazard mapping using geospatial techniques and satellite images-a case study of coastal district of Tamil Nadu.
    Thirumurugan P; Krishnaveni M
    Environ Monit Assess; 2019 Feb; 191(3):193. PubMed ID: 30810867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India.
    Shekar PR; Mathew A
    Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method.
    Plataridis K; Mallios Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-spatial flood risk assessment in Nagaon district, Assam (India) using GIS-based multi-criteria decision analysis (MCDA) and analytical hierarchy process (AHP).
    Bhuyan MJ; Deka N; Saikia A
    Risk Anal; 2024 Apr; 44(4):817-832. PubMed ID: 37474467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran).
    Nasiri H; Boloorani AD; Sabokbar HA; Jafari HR; Hamzeh M; Rafii Y
    Environ Monit Assess; 2013 Jan; 185(1):707-18. PubMed ID: 22402992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.
    Lim J; Lee KS
    Environ Monit Assess; 2017 Mar; 189(3):96. PubMed ID: 28161882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework.
    Vaddiraju SC; Talari R
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. District flood vulnerability assessment using analytic hierarchy process (AHP) with historical flood events in Bhutan.
    Tempa K
    PLoS One; 2022; 17(6):e0270467. PubMed ID: 35749469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping and assessing spatial extent of floods from multitemporal synthetic aperture radar images: a case study on Brahmaputra River in Assam State, India.
    Surampudi S; Yarrakula K
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1521-1532. PubMed ID: 31755058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods.
    Ghanem MAAN; Zaifoglu H
    Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency evaluation of low impact development practices on urban flood risk.
    Ayoubi Ayoublu S; Vafakhah M; Pourghasemi HR
    J Environ Manage; 2024 Apr; 356():120467. PubMed ID: 38484592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India.
    Mitra R; Das J
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16036-16067. PubMed ID: 36180798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater spring potential zonation using AHP and fuzzy-AHP in Eastern Himalayan region: Papum Pare district, Arunachal Pradesh, India.
    Ranjan P; Pandey PK; Pandey V
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10317-10333. PubMed ID: 37012568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.