These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38430587)
21. Longevity of coal waste for controlling cadmium-contaminated groundwater considering groundwater velocity. Kim JH; Kwak HY; Kwak E; Kim BJ; Lee S Environ Sci Pollut Res Int; 2023 Apr; 30(17):51170-51179. PubMed ID: 36808035 [TBL] [Abstract][Full Text] [Related]
22. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling. Wanner C; Zink S; Eggenberger U; Mäder U J Contam Hydrol; 2012 Apr; 131(1-4):54-63. PubMed ID: 22343010 [TBL] [Abstract][Full Text] [Related]
23. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications. Singh R; Chakma S; Birke V Sci Total Environ; 2023 Feb; 858(Pt 1):158838. PubMed ID: 36122715 [TBL] [Abstract][Full Text] [Related]
24. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. Zhou D; Li Y; Zhang Y; Zhang C; Li X; Chen Z; Huang J; Li X; Flores G; Kamon M J Contam Hydrol; 2014 Nov; 168():1-16. PubMed ID: 25244420 [TBL] [Abstract][Full Text] [Related]
25. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater. Wilkin RT; Acree SD; Ross RR; Puls RW; Lee TR; Woods LL Sci Total Environ; 2014 Jan; 468-469():186-94. PubMed ID: 24021639 [TBL] [Abstract][Full Text] [Related]
26. Three porous shapeable three-component hydrogen-bonded covalent-organic aerogels as backfill materials in a simulated permeable reactive barrier (PRB) for trapping levofloxacin. Zhang F; Hong M; Bai J; Liu Z; Jia A; Liu Z; Shi C; Li Y J Hazard Mater; 2022 Jan; 422():126829. PubMed ID: 34399228 [TBL] [Abstract][Full Text] [Related]
27. Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models. Carniato L; Schoups G; Seuntjens P; Van Nooten T; Simons Q; Bastiaens L J Contam Hydrol; 2012 Nov; 142-143():93-108. PubMed ID: 23174212 [TBL] [Abstract][Full Text] [Related]
28. A two-dimensional analytical model for heavy metal contaminants transport in permeable reactive barrier. Jiang J; Luo HH; Wang SF; Su J; Yu YD Water Sci Technol; 2023 Jan; 87(2):393-406. PubMed ID: 36706289 [TBL] [Abstract][Full Text] [Related]
29. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds. Erto A; Bortone I; Di Nardo A; Di Natale M; Musmarra D J Environ Manage; 2014 Jul; 140():111-9. PubMed ID: 24747934 [TBL] [Abstract][Full Text] [Related]
30. Geochemical stability of zero-valent iron modified raw wheat straw innovatively applicated to in situ permeable reactive barrier: N Guo C; Qi L; Bai Y; Yin L; Li L; Zhang W Ecotoxicol Environ Saf; 2021 Aug; 224():112649. PubMed ID: 34425538 [TBL] [Abstract][Full Text] [Related]
31. Applicability of weathered coal waste as a reactive material to prevent the spread of inorganic contaminants in groundwater. Kim JH; Chang B; Kim BJ; Park C; Goo JY; Lee YJ; Lee S Environ Sci Pollut Res Int; 2020 Dec; 27(36):45297-45310. PubMed ID: 32785894 [TBL] [Abstract][Full Text] [Related]
32. Naphthalene remediation form groundwater by calcium peroxide (CaO Gholami F; Shavandi M; Dastgheib SMM; Amoozegar MA Chemosphere; 2018 Dec; 212():105-113. PubMed ID: 30144671 [TBL] [Abstract][Full Text] [Related]
33. In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study. Wang Q; Song X; Wei C; Jin P; Chen X; Tang Z; Li K; Ding X; Fu H Sci Total Environ; 2022 Jan; 805():150260. PubMed ID: 34537698 [TBL] [Abstract][Full Text] [Related]
35. Combination of zeolite barrier and bio sparging techniques to enhance efficiency of organic hydrocarbon remediation in a model of shallow groundwater. Ahmadnezhad Z; Vaezihir A; Schüth C; Zarrini G Chemosphere; 2021 Jun; 273():128555. PubMed ID: 33087257 [TBL] [Abstract][Full Text] [Related]
36. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Obiri-Nyarko F; Grajales-Mesa SJ; Malina G Chemosphere; 2014 Sep; 111():243-59. PubMed ID: 24997925 [TBL] [Abstract][Full Text] [Related]
37. Investigation of aqueous Fe(III) and Mn(II) removal using dolomite as a permeable reactive barrier material. Liang-Tong Z; Li Z; Yuqing Y; Na H; Bate B Environ Technol; 2023 Jun; 44(14):2039-2053. PubMed ID: 34919016 [TBL] [Abstract][Full Text] [Related]
38. A preliminary approach based on numerical simulation modelling and evaluation of permeable reactive barrier for aquifer remediation susceptible to selenium contaminant. Saadatpour M; Goeini M; Afshar A; Shahmirnoori A J Environ Manage; 2023 Apr; 331():117242. PubMed ID: 36630800 [TBL] [Abstract][Full Text] [Related]
39. Removal of Transition Metals from Contaminated Aquifers by PRB Technology: Performance Comparison among Reactive Materials. Mayacela-Rojas CM; Molinari A; Cortina JL; Gibert O; Ayora C; Tavolaro A; Rivera-Velásquez MF; Fallico C Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34199945 [TBL] [Abstract][Full Text] [Related]
40. In-situ reactivation and reuse of micronsized sulfidated zero-valent iron using SRB-enriched culture: A sustainable PRB technology. Yang Y; Zhan C; Li Y; Zeng J; Lin K; Sun J; Jiang F Water Res; 2024 Apr; 253():121270. PubMed ID: 38359598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]