These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38431000)

  • 1. Engineering of 4-hydroxyphenylacetate 3-hydroxylase derived from Pseudomonas aeruginosa for the ortho-hydroxylation of ferulic acid.
    Sun P; Zheng P; Chen P; Wu D; Xu S
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130545. PubMed ID: 38431000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.
    Furuya T; Kino K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1145-54. PubMed ID: 23666444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile
    Sun P; Xu S; Tian Y; Chen P; Wu D; Zheng P
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [High-density fermentation of
    Zhang H; Lin J; Hu D; Liu G; Sun L
    Sheng Wu Gong Cheng Xue Bao; 2022 Sep; 38(9):3466-3477. PubMed ID: 36151814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of 3-Hydroxyphloretin Using Rational Design of 4-Hydroxyphenylacetate 3-Monooxygenase.
    Xu S; Zheng P; Sun P; Chen P; Wu D
    J Agric Food Chem; 2023 Dec; 71(49):19457-19464. PubMed ID: 38029276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the Biosynthesis of B-Ring
    Wang L; Ma X; Ruan H; Chen Y; Gao L; Lei T; Li Y; Gui L; Guo L; Xia T; Wang Y
    Molecules; 2021 May; 26(10):. PubMed ID: 34069009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli.
    Cooper RA; Skinner MA
    J Bacteriol; 1980 Jul; 143(1):302-6. PubMed ID: 6995433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in 4-Hydroxyphenylacetate-3-hydroxylase Monooxygenase.
    Yang K; Zhang Q; Zhao W; Hu S; Lv C; Huang J; Mei J; Mei L
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.
    Katsuki N; Masuo S; Nukui N; Minakawa H; Takaya N
    J Gen Appl Microbiol; 2024 May; 69(6):301-308. PubMed ID: 37648467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa.
    Visca P; Ciervo A; Orsi N
    J Bacteriol; 1994 Feb; 176(4):1128-40. PubMed ID: 8106324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting cofactors regeneration in methylation and hydroxylation for high level production of Ferulic acid.
    Zhou Z; Zhang X; Wu J; Li X; Li W; Sun X; Wang J; Yan Y; Shen X; Yuan Q
    Metab Eng; 2022 Sep; 73():247-255. PubMed ID: 35987433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase.
    Chakraborty S; Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2010 Jan; 49(2):372-85. PubMed ID: 20000468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Dhammaraj T; Chantiwas R; Chaiyen P
    Arch Biochem Biophys; 2017 Apr; 620():1-11. PubMed ID: 28300536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex.
    Lin Y; Yan Y
    Microb Cell Fact; 2012 Apr; 11():42. PubMed ID: 22475509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Characterization of 4-Hydroxyphenylacetate 3-Hydroxylase from Escherichia coli.
    Deng Y; Faivre B; Back O; Lombard M; Pecqueur L; Fontecave M
    Chembiochem; 2020 Jan; 21(1-2):163-170. PubMed ID: 31155821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Synthesis of l-
    Hara R; Nakajima Y; Yanagawa H; Gawasawa R; Hirasawa I; Kino K
    Appl Environ Microbiol; 2021 Sep; 87(20):e0133521. PubMed ID: 34347519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the 4-Hydroxyphenylacetate-3-hydroxylase Substrate Pocket to Increase Activity towards Resveratrol.
    Zhang Q; Jin Y; Yang K; Hu S; Lv C; Huang J; Mei J; Zhao W; Mei L
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Bacterial Flavin-Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols.
    Herrmann S; Dippe M; Pecher P; Funke E; Pietzsch M; Wessjohann LA
    Chembiochem; 2022 Mar; 23(6):e202100480. PubMed ID: 34979058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.