These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38431230)

  • 1. Predicting the in vivo developmental toxicity of fenarimol from in vitro toxicity data using PBTK modelling-facilitated reverse dosimetry approach.
    Bhateria M; Taneja I; Karsauliya K; Sonker AK; Shibata Y; Sato H; Singh SP; Hisaka A
    Toxicol Appl Pharmacol; 2024 Mar; 484():116879. PubMed ID: 38431230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity.
    Strikwold M; Spenkelink B; Woutersen RA; Rietjens IMCM; Punt A
    Toxicol Sci; 2017 Jun; 157(2):365-376. PubMed ID: 28498972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma protein binding, metabolism, reaction phenotyping and toxicokinetic studies of fenarimol after oral and intravenous administration in rats.
    Karsauliya K; Sonker AK; Bhateria M; Taneja I; Srivastava A; Sharma M; Singh SP
    Xenobiotica; 2021 Jan; 51(1):72-81. PubMed ID: 32660295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data.
    Cooper AB; Aggarwal M; Bartels MJ; Morriss A; Terry C; Lord GA; Gant TW
    Regul Toxicol Pharmacol; 2019 Mar; 102():1-12. PubMed ID: 30543831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of the physiologically-based toxicokinetic (PBTK) model for ochratoxin A (OTA) in rats and humans.
    Su BD; Li XM; Huang ZW; Wang Y; Shao J; Xu YY; Shu LX; Li YB
    Ecotoxicol Environ Saf; 2024 May; 276():116277. PubMed ID: 38604061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generic PBTK model implemented in the MCRA platform: Predictive performance and uses in risk assessment of chemicals.
    Tebby C; van der Voet H; de Sousa G; Rorije E; Kumar V; de Boer W; Kruisselbrink JW; Bois FY; Faniband M; Moretto A; Brochot C
    Food Chem Toxicol; 2020 Aug; 142():111440. PubMed ID: 32473292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds.
    Fabian E; Gomes C; Birk B; Williford T; Hernandez TR; Haase C; Zbranek R; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2019 Feb; 93(2):401-416. PubMed ID: 30552464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification.
    Chou WC; Lin Z
    Environ Int; 2019 Aug; 129():408-422. PubMed ID: 31152982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions.
    Honda GS; Pearce RG; Pham LL; Setzer RW; Wetmore BA; Sipes NS; Gilbert J; Franz B; Thomas RS; Wambaugh JF
    PLoS One; 2019; 14(5):e0217564. PubMed ID: 31136631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of physiologically based kinetic modeling-facilitated reverse dosimetry of in vitro toxicity data for prediction of in vivo developmental toxicity of tebuconazole in rats.
    Li H; Zhang M; Vervoort J; Rietjens IM; van Ravenzwaay B; Louisse J
    Toxicol Lett; 2017 Jan; 266():85-93. PubMed ID: 27890808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recommendations for the reference concentration of cadmium exposure based on a physiologically based toxicokinetic model integrated with a human respiratory tract model.
    Tang Y; Lyu T; Cao H; Zhang W; Zhang R; Liu S; Guo T; Zhou X; Jiang Y
    J Hazard Mater; 2024 Sep; 477():135323. PubMed ID: 39079294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative.
    Sarigiannis DA; Karakitsios S; Dominguez-Romero E; Papadaki K; Brochot C; Kumar V; Schuhmacher M; Sy M; Mielke H; Greiner M; Mengelers M; Scheringer M
    Environ Res; 2019 May; 172():216-230. PubMed ID: 30818231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics.
    Jeong SH; Jang JH; Lee YB
    Environ Pollut; 2022 Nov; 312():120041. PubMed ID: 36030954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically based toxicokinetic modelling of Tri(2-chloroethyl) phosphate (TCEP) in mice accounting for multiple exposure routes.
    Ding J; He W; Sha W; Shan G; Zhu L; Zhu L; Feng J
    Ecotoxicol Environ Saf; 2024 Feb; 271():115976. PubMed ID: 38232524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian analysis of physiologically based toxicokinetic (PBTK) modeling for pentachlorophenol exposure in pregnant women.
    Wu C; Tan Y; Wei X; Li X; Sun S; Lyu B; Shen Z; Wei X; Xiao S; Ruan Y; Yu J; He G; Zheng W; Li J
    Toxicol In Vitro; 2024 Aug; 99():105853. PubMed ID: 38806067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a rapid, generic human gestational dose model.
    Kapraun DF; Sfeir M; Pearce RG; Davidson-Fritz SE; Lumen A; Dallmann A; Judson RS; Wambaugh JF
    Reprod Toxicol; 2022 Oct; 113():172-188. PubMed ID: 36122840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-individual exposure variability interpretation through reflection of biological age algorithm in physiologically based toxicokinetic model: Application to human risk assessment of di-isobutyl-phthalate.
    Jeong SH; Jang JH; Lee YB
    Environ Pollut; 2023 Nov; 336():122388. PubMed ID: 37598929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish Physiologically Based Toxicokinetic Modeling Approach for In Vitro-In Vivo and Cross-Species Extrapolation of Endocrine-Disrupting Chemicals in Risk Assessment.
    Xie R; Xu Y; Ma M; Wang Z
    Environ Sci Technol; 2024 Feb; 58(8):3677-3689. PubMed ID: 38354091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide.
    DeWoskin RS; Sweeney LM; Teeguarden JG; Sams R; Vandenberg J
    Food Chem Toxicol; 2013 Aug; 58():506-21. PubMed ID: 23707562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks.
    Armitage JM; Hughes L; Sangion A; Arnot JA
    Environ Int; 2021 Sep; 154():106557. PubMed ID: 33892222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.