BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38431424)

  • 1. Preparation of patterned hydrogels for anti-counterfeiting and directional actuation by shear-induced orientation of cellulose nanocrystals.
    Sun W; Song Z; Wang J; Yi Z; He M
    Carbohydr Polym; 2024 May; 332():121946. PubMed ID: 38431424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic cellulose nanocrystal composite hydrogel for multiple responses and information encryption.
    Sun W; Wang J; He M
    Carbohydr Polym; 2023 Mar; 303():120446. PubMed ID: 36657839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics.
    Nasseri R; Bouzari N; Huang J; Golzar H; Jankhani S; Tang XS; Mekonnen TH; Aghakhani A; Shahsavan H
    Nat Commun; 2023 Sep; 14(1):6108. PubMed ID: 37777525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose Nanocrystal-Based Gradient Hydrogel Actuators with Controllable Bending Properties.
    Roopsung N; Sugawara A; Hsu YI; Asoh TA; Uyama H
    Macromol Rapid Commun; 2023 Sep; 44(18):e2300205. PubMed ID: 37335985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable Shear-Thinning Fluorescent Hydrogel Formed by Cellulose Nanocrystals and Graphene Quantum Dots.
    Khabibullin A; Alizadehgiashi M; Khuu N; Prince E; Tebbe M; Kumacheva E
    Langmuir; 2017 Oct; 33(43):12344-12350. PubMed ID: 28953408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing.
    Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X
    Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsive and patterned cellulose nanocrystal films modified by N-methylmorpholine-N-oxide.
    Zhang Y; Tian Z; Fu Y; Wang Z; Qin M; Yuan Z
    Carbohydr Polym; 2020 Jan; 228():115387. PubMed ID: 31635736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroactive Hydrogels Made with Polyvinyl Alcohol/Cellulose Nanocrystals.
    Jayaramudu T; Ko HU; Kim HC; Kim JW; Muthoka RM; Kim J
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30181521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic 3D Color-Changing Hydrogel Actuators Constructed Based on Soft Permeable Photonic Crystals.
    Duan J; Cui L; Li M; Fan W; Sui K
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):54018-54026. PubMed ID: 37957821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xyloglucan-cellulose nanocrystal-chitosan double network hydrogels for soft actuators.
    Leray N; Talantikite M; Villares A; Cathala B
    Carbohydr Polym; 2022 Oct; 293():119753. PubMed ID: 35798415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magneto-Orientation of Magnetic Double Stacks for Patterned Anisotropic Hydrogels with Multiple Responses and Modulable Motions.
    Dai CF; Khoruzhenko O; Zhang C; Zhu QL; Jiao D; Du M; Breu J; Zhao P; Zheng Q; Wu ZL
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202207272. PubMed ID: 35749137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of crystalline nanocellulose/hydroxypropyl β cyclodextrin/carboxymethyl cellulose polyelectrolyte complexes and their controlled release of neohesperidin-copper (II) in vitro.
    Xia N; Wan W; Zhu S; Liu Q
    Int J Biol Macromol; 2020 Nov; 163():1518-1528. PubMed ID: 32771507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid).
    Li B; Zhang Y; Wu C; Guo B; Luo Z
    Carbohydr Polym; 2018 Oct; 198():1-8. PubMed ID: 30092978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive printing of recyclable anti-counterfeiting patterns with sol-gel cellulose nanocrystal inks.
    Li D; Yuan J; Cheng Q; Wei P; Cheng GJ; Chang C
    Nanoscale; 2021 Jul; 13(27):11808-11816. PubMed ID: 34227638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Mode Hydrogels with Structural and Fluorescent Colors toward Multistage Secure Information Encryption.
    Sun Y; Le X; Shang H; Shen Y; Wu Y; Liu Q; Théato P; Chen T
    Adv Mater; 2024 May; ():e2401589. PubMed ID: 38744437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review.
    He X; Lu Q
    Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress.
    Liu L; Tanguy NR; Yan N; Wu Y; Liu X; Qing Y
    Carbohydr Polym; 2022 Mar; 280():119005. PubMed ID: 35027120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Color-Switching of Hydrogel Micropillar Array under Ethanol Vapor for Optical Encryption.
    Zhou MX; Jin F; Wang JY; Dong XZ; Liu J; Zheng ML
    Small; 2023 Nov; 19(47):e2304384. PubMed ID: 37480176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic chitosan/tunicate cellulose nanocrystals hydrogel with tunable interference color and acid-responsiveness.
    Zheng Y; Zhang L; Duan B
    Carbohydr Polym; 2022 Nov; 295():119866. PubMed ID: 35988983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.