These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38431424)

  • 21. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
    Zhou C; Wu Q; Yue Y; Zhang Q
    J Colloid Interface Sci; 2011 Jan; 353(1):116-23. PubMed ID: 20932533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing.
    Yin F; Lin L; Zhan S
    J Biomater Sci Polym Ed; 2019 Feb; 30(3):190-201. PubMed ID: 30556771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable two-step shape and dimensional changes with temperature of a PNIPAM/CNC hydrogel.
    Xu Y; Ajji A; Heuzey MC
    Soft Matter; 2022 Jun; 18(23):4437-4444. PubMed ID: 35640577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and properties of cellulose nanocrystal-based ion-conductive hydrogels.
    Huang X; Ao X; Yang L; Ye J; Wang C
    RSC Adv; 2022 Dec; 13(1):527-533. PubMed ID: 36605624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.
    Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L
    J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers.
    Sun D; Gao Y; Zhou Y; Yang M; Hu J; Lu T; Wang T
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49389-49397. PubMed ID: 36273343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-emitting cellulose nanocrystal hybrid materials with circularly polarized luminescence for anti-counterfeiting labels.
    Xing L; Li G; Sun Y; Wang X; Yuan Z; Fu Y; Qin M
    Carbohydr Polym; 2023 Aug; 313():120856. PubMed ID: 37182956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release.
    Emam HE; Shaheen TI
    Carbohydr Polym; 2022 Feb; 278():118925. PubMed ID: 34973743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast, High-Strain, and Strong Uniaxial Hydrogel Actuators from Recyclable Nanofibril Networks.
    Benselfelt T; Rothemund P; Lee PS
    Adv Mater; 2023 Jun; 35(22):e2300487. PubMed ID: 37002908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidimensional dynamic regulation of cellulose coloration for digital recognition and humidity response.
    Duan C; Wang B; Li J; Xu J; Zeng J; Ying G; Chen K
    Int J Biol Macromol; 2023 Apr; 234():123597. PubMed ID: 36796560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
    Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E
    Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyelectrolyte-Mediated Modulation of Spatial Internal Stresses of Hydrogels for Complex 3D Actuators.
    Duan J; Fan W; Xu Z; Cui L; Wang Z; Nie Z; Sui K
    Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202410383. PubMed ID: 38922734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release.
    Bertsch P; Schneider L; Bovone G; Tibbitt MW; Fischer P; Gstöhl S
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38578-38585. PubMed ID: 31573787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation.
    Shang J; Theato P
    Soft Matter; 2018 Nov; 14(41):8401-8407. PubMed ID: 30311935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose Nanocrystals-Incorporated Thermosensitive Hydrogel for Controlled Release, 3D Printing, and Breast Cancer Treatment Applications.
    Phan VHG; Murugesan M; Huong H; Le TT; Phan TH; Manivasagan P; Mathiyalagan R; Jang ES; Yang DC; Li Y; Thambi T
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42812-42826. PubMed ID: 36112403
    [No Abstract]   [Full Text] [Related]  

  • 36. Micropatterned Hydrogels with Highly Ordered Cellulose Nanocrystals for Visually Monitoring Cardiomyocytes.
    Wang J; Liu Q; Gong J; Wan Z; Zhou J; Chang C; Zhang D
    Small; 2022 Nov; 18(45):e2202235. PubMed ID: 36089663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent cellulose nanocrystals/waterborne polyurethane nanocomposites for anti-counterfeiting applications.
    Ye X; Wang S; Zhou P; Zhang D; Zhu P
    Phys Chem Chem Phys; 2023 Mar; 25(13):9492-9499. PubMed ID: 36938804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures.
    Xiao S; Zhang M; He X; Huang L; Zhang Y; Ren B; Zhong M; Chang Y; Yang J; Zheng J
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21642-21653. PubMed ID: 29878750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications.
    Chen L; Lai C; Marchewka R; Berry RM; Tam KC
    Nanoscale; 2016 Jul; 8(27):13288-96. PubMed ID: 27337656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects.
    Xiao S; Yang Y; Zhong M; Chen H; Zhang Y; Yang J; Zheng J
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20843-20851. PubMed ID: 28570039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.