These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38431581)

  • 21. Compartmental structures used in modeling COVID-19: a scoping review.
    Kong L; Duan M; Shi J; Hong J; Chang Z; Zhang Z
    Infect Dis Poverty; 2022 Jun; 11(1):72. PubMed ID: 35729655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An SEIR Model with Time-Varying Coefficients for Analyzing the SARS-CoV-2 Epidemic.
    Girardi P; Gaetan C
    Risk Anal; 2023 Jan; 43(1):144-155. PubMed ID: 34799850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. International travel-related control measures to contain the COVID-19 pandemic: a rapid review.
    Burns J; Movsisyan A; Stratil JM; Biallas RL; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Klinger C; Kratzer S; Litwin T; Norris S; Pfadenhauer LM; von Philipsborn P; Sell K; Stadelmaier J; Verboom B; Voss S; Wabnitz K; Rehfuess E
    Cochrane Database Syst Rev; 2021 Mar; 3(3):CD013717. PubMed ID: 33763851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of the Transition From Subexponential to the Exponential Transmission of SARS-CoV-2 in Chennai, India: Epidemic Nowcasting.
    Krishnamurthy K; Ambikapathy B; Kumar A; Britto L
    JMIR Public Health Surveill; 2020 Sep; 6(3):e21152. PubMed ID: 32609621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fine-Grained Agent-Based Modeling to Predict Covid-19 Spreading and Effect of Policies in Large-Scale Scenarios.
    Lombardo G; Pellegrino M; Tomaiuolo M; Cagnoni S; Mordonini M; Giacobini M; Poggi A
    IEEE J Biomed Health Inform; 2022 May; 26(5):2052-2062. PubMed ID: 35298388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Epidemic Wave Model of the COVID-19 Pandemic: Modeling Study.
    Kaxiras E; Neofotistos G
    J Med Internet Res; 2020 Jul; 22(7):e20912. PubMed ID: 32692690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the COVID-19 Epidemic With Multi-Population and Control Strategies in the United States.
    Sun D; Long X; Liu J
    Front Public Health; 2021; 9():751940. PubMed ID: 35047470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Simulation Study of Coronavirus as an Epidemic Disease Using Agent-Based Modeling.
    Alzu'bi AA; Alasal SIA; Watzlaf VJM
    Perspect Health Inf Manag; 2021; 18(Winter):1g. PubMed ID: 33633517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis.
    Alrasheed H; Althnian A; Kurdi H; Al-Mgren H; Alharbi S
    Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33113936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the Demand for Nucleic Acid Testing in Different Scenarios of COVID-19 Transmission: A Simulation Study.
    Wang YY; Zhang WW; Lu ZX; Sun JL; Jing MX
    Infect Dis Ther; 2024 Apr; 13(4):813-826. PubMed ID: 38498107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spread of COVID-19 in China: analysis from a city-based epidemic and mobility model.
    Wei Y; Wang J; Song W; Xiu C; Ma L; Pei T
    Cities; 2021 Mar; 110():103010. PubMed ID: 33162634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using outbreak data to estimate the dynamic COVID-19 landscape in Eastern Africa.
    Wamalwa M; Tonnang HEZ
    BMC Infect Dis; 2022 Jun; 22(1):531. PubMed ID: 35681129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dynamic microsimulation model for epidemics.
    Spooner F; Abrams JF; Morrissey K; Shaddick G; Batty M; Milton R; Dennett A; Lomax N; Malleson N; Nelissen N; Coleman A; Nur J; Jin Y; Greig R; Shenton C; Birkin M
    Soc Sci Med; 2021 Dec; 291():114461. PubMed ID: 34717286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How individuals' opinions influence society's resistance to epidemics: an agent-based model approach.
    Yu G; Garee M; Ventresca M; Yih Y
    BMC Public Health; 2024 Mar; 24(1):863. PubMed ID: 38509526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal transmission of infectious particles in environment: A case study of Covid-19.
    Karimian H; Fan Q; Li Q; Chen Y; Shi J
    Chemosphere; 2023 Sep; 335():139065. PubMed ID: 37247670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal allocation of limited test resources for the quantification of COVID-19 infections.
    Chatzimanolakis M; Weber P; Arampatzis G; Wälchli D; Kičić I; Karnakov P; Papadimitriou C; Koumoutsakos P
    Swiss Med Wkly; 2020 Dec; 150():w20445. PubMed ID: 33327002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An agent-based model to evaluate the COVID-19 transmission risks in facilities.
    Cuevas E
    Comput Biol Med; 2020 Jun; 121():103827. PubMed ID: 32568667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial co-location patterns between early COVID-19 risk and urban facilities: a case study of Wuhan, China.
    Zhi G; Meng B; Lin H; Zhang X; Xu M; Chen S; Wang J
    Front Public Health; 2023; 11():1293888. PubMed ID: 38239800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homogenous mixing and network approximations in discrete-time formulation of a SIRS model.
    Renna I
    J Biol Dyn; 2021 Dec; 15(1):635-651. PubMed ID: 34856872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial-temporal diffusion model of aggregated infectious diseases based on population life characteristics: a case study of COVID-19.
    Cao W; Zhao S; Tong X; Dai H; Sun J; Xu J; Qiu G; Zhu J; Tian Y
    Math Biosci Eng; 2023 Jun; 20(7):13086-13112. PubMed ID: 37501479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.