These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38431598)
1. Enhancement of cellulolytic enzyme production from intrageneric protoplast fusion of Aspergillus species and evaluating the hydrolysate scavenging activity. Goda DA; Shakam HM; Metwally ME; Abdelrasoul HA; Yacout MM Microb Cell Fact; 2024 Mar; 23(1):73. PubMed ID: 38431598 [TBL] [Abstract][Full Text] [Related]
2. Production of cellulases by Vieira MM; Kadoguchi E; Segato F; da Silva SS; Chandel AK Prep Biochem Biotechnol; 2021; 51(2):153-163. PubMed ID: 32757876 [No Abstract] [Full Text] [Related]
3. Optimisation of Singh N; Sithole BB; Govinden R Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373076 [TBL] [Abstract][Full Text] [Related]
4. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. El-Bondkly AM; El-Gendy MM Antonie Van Leeuwenhoek; 2012 Feb; 101(2):331-46. PubMed ID: 21898149 [TBL] [Abstract][Full Text] [Related]
5. Green ecofriendly enhancement of cellulase productivity using agricultural wastes by Aspergillus terreus MN901491: statistical designs and detergent ability on cotton fabrics. Abdella MAA; Ahmed NE; Hasanin MS Microb Cell Fact; 2024 Apr; 23(1):109. PubMed ID: 38609920 [TBL] [Abstract][Full Text] [Related]
6. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
7. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
9. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Singhania RR; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2007 Jul; 142(1):60-70. PubMed ID: 18025569 [TBL] [Abstract][Full Text] [Related]
10. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Rodríguez-Zúñiga UF; Bertucci Neto V; Couri S; Crestana S; Farinas CS Appl Biochem Biotechnol; 2014 Mar; 172(5):2348-62. PubMed ID: 24363237 [TBL] [Abstract][Full Text] [Related]
11. Strain improvement of thermotolerant Saccharomyces cerevisiae VS strain for better utilization of lignocellulosic substrates. Pasha C; Kuhad RC; Rao LV J Appl Microbiol; 2007 Nov; 103(5):1480-9. PubMed ID: 17953559 [TBL] [Abstract][Full Text] [Related]
12. Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Kaur B; Sharma M; Soni R; Oberoi HS; Chadha BS Appl Biochem Biotechnol; 2013 Jan; 169(2):393-407. PubMed ID: 23197346 [TBL] [Abstract][Full Text] [Related]
13. Response surface optimization of cellulase production by Thakur G; Sutaoney P; Joshi V; Ghosh P 3 Biotech; 2024 Jan; 14(1):21. PubMed ID: 38146418 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of enhanced production of cellulose deconstructing enzyme using natural and alkali pretreated sugar cane bagasse under the influence of graphene oxide. Srivastava N; Mohammad A; Singh R; Srivastava M; Syed A; Bahadur Pal D; Elgorban AM; Mishra PK; Gupta VK Bioresour Technol; 2021 Dec; 342():126015. PubMed ID: 34592619 [TBL] [Abstract][Full Text] [Related]
15. Lignocellulose hydrolytic enzymes production by Namnuch N; Thammasittirong A; Thammasittirong SN Mycology; 2020 Aug; 12(2):119-127. PubMed ID: 34026303 [TBL] [Abstract][Full Text] [Related]
16. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Maeda RN; Barcelos CA; Santa Anna LM; Pereira N J Biotechnol; 2013 Jan; 163(1):38-44. PubMed ID: 23123260 [TBL] [Abstract][Full Text] [Related]
17. Use of an (Hemi) Cellulolytic Enzymatic Extract Produced by Aspergilli Species Consortium in the Saccharification of Biomass Sorghum. Dos Santos BV; Rodrigues PO; Albuquerque CJB; Pasquini D; Baffi MA Appl Biochem Biotechnol; 2019 Sep; 189(1):37-48. PubMed ID: 30863986 [TBL] [Abstract][Full Text] [Related]
18. A closed-loop strategy for endoglucanase production using sugarcane bagasse liquefied by a home-made enzymatic cocktail. Squinca P; Badino AC; Farinas CS Bioresour Technol; 2018 Feb; 249():976-982. PubMed ID: 29145125 [TBL] [Abstract][Full Text] [Related]
19. Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation. Arnthong J; Siamphan C; Chuaseeharonnachai C; Boonyuen N; Suwannarangsee S J Microbiol Biotechnol; 2020 Nov; 30(11):1670-1679. PubMed ID: 32876068 [TBL] [Abstract][Full Text] [Related]
20. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Gawande PV; Kamat MY J Appl Microbiol; 1999 Oct; 87(4):511-9. PubMed ID: 10583678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]