These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38431617)

  • 1. RTF2 controls replication repriming and ribonucleotide excision at the replisome.
    Conti BA; Ruiz PD; Broton C; Blobel NJ; Kottemann MC; Sridhar S; Lach FP; Wiley TF; Sasi NK; Carroll T; Smogorzewska A
    Nat Commun; 2024 Mar; 15(1):1943. PubMed ID: 38431617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RTF2 controls replication repriming and ribonucleotide excision at the replisome.
    Conti BA; Ruiz PD; Broton C; Blobel NJ; Kottemann MC; Sridhar S; Lach FP; Wiley T; Sasi NK; Carroll T; Smogorzewska A
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity.
    Kottemann MC; Conti BA; Lach FP; Smogorzewska A
    Mol Cell; 2018 Jan; 69(1):24-35.e5. PubMed ID: 29290612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart.
    Inagawa T; Yamada-Inagawa T; Eydmann T; Mian IS; Wang TS; Dalgaard JZ
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7927-32. PubMed ID: 19416828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart.
    Heuzé J; Kemiha S; Barthe A; Vilarrubias AT; Aouadi E; Aiello U; Libri D; Lin YL; Lengronne A; Poli J; Pasero P
    EMBO J; 2023 Dec; 42(23):e113104. PubMed ID: 37855233
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Budden AM; Eravci M; Watson AT; Campillo-Funollet E; Oliver AW; Naiman K; Carr AM
    Elife; 2023 Aug; 12():. PubMed ID: 37615341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Termination of DNA replication forks: "Breaking up is hard to do".
    Bailey R; Priego Moreno S; Gambus A
    Nucleus; 2015; 6(3):187-96. PubMed ID: 25835602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Initial Response of a Eukaryotic Replisome to DNA Damage.
    Taylor MRG; Yeeles JTP
    Mol Cell; 2018 Jun; 70(6):1067-1080.e12. PubMed ID: 29944888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork.
    Calzada A; Hodgson B; Kanemaki M; Bueno A; Labib K
    Genes Dev; 2005 Aug; 19(16):1905-19. PubMed ID: 16103218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation.
    Audoynaud C; Schirmeisen K; Ait Saada A; Gesnik A; Fernández-Varela P; Boucherit V; Ropars V; Chaudhuri A; Fréon K; Charbonnier JB; Lambert SAE
    Mol Cell; 2023 Apr; 83(7):1061-1074.e6. PubMed ID: 36868227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry.
    Hashimoto Y; Tanaka H
    J Biol Chem; 2021; 296():100033. PubMed ID: 33148697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response.
    Svoboda M; Konvalinka J; Trempe JF; Grantz Saskova K
    DNA Repair (Amst); 2019 Aug; 80():45-51. PubMed ID: 31276951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.
    Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T
    Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
    Szyjka SJ; Aparicio JG; Viggiani CJ; Knott S; Xu W; Tavaré S; Aparicio OM
    Genes Dev; 2008 Jul; 22(14):1906-20. PubMed ID: 18628397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replisome structure suggests mechanism for continuous fork progression and post-replication repair.
    Yang W; Seidman MM; Rupp WD; Gao Y
    DNA Repair (Amst); 2019 Sep; 81():102658. PubMed ID: 31303546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways of mammalian replication fork restart.
    Petermann E; Helleday T
    Nat Rev Mol Cell Biol; 2010 Oct; 11(10):683-7. PubMed ID: 20842177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repriming of DNA synthesis at stalled replication forks by human PrimPol.
    Mourón S; Rodriguez-Acebes S; Martínez-Jiménez MI; García-Gómez S; Chocrón S; Blanco L; Méndez J
    Nat Struct Mol Biol; 2013 Dec; 20(12):1383-9. PubMed ID: 24240614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks.
    Rageul J; Park JJ; Zeng PP; Lee EA; Yang J; Hwang S; Lo N; Weinheimer AS; Schärer OD; Yeo JE; Kim H
    Nat Commun; 2020 Oct; 11(1):5495. PubMed ID: 33127907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements.
    Deng L; Wu RA; Sonneville R; Kochenova OV; Labib K; Pellman D; Walter JC
    Mol Cell; 2019 Mar; 73(5):915-929.e6. PubMed ID: 30849395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdependent progression of bidirectional sister replisomes in
    Chen PJ; McMullin AB; Visser BJ; Mei Q; Rosenberg SM; Bates D
    Elife; 2023 Jan; 12():. PubMed ID: 36621919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.