These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38431624)

  • 1. Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO).
    Ge K; Shao H; Raymundo-Piñero E; Taberna PL; Simon P
    Nat Commun; 2024 Mar; 15(1):1935. PubMed ID: 38431624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite.
    Boyd S; Ganeshan K; Tsai WY; Wu T; Saeed S; Jiang DE; Balke N; van Duin ACT; Augustyn V
    Nat Mater; 2021 Dec; 20(12):1689-1694. PubMed ID: 34341525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid.
    Ye J; Wu YC; Xu K; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    J Am Chem Soc; 2019 Oct; 141(42):16559-16563. PubMed ID: 31588740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes.
    Srimuk P; Lee J; Budak Ö; Choi J; Chen M; Feng G; Prehal C; Presser V
    Langmuir; 2018 Nov; 34(44):13132-13143. PubMed ID: 30350685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
    Dang YQ; Ren SZ; Liu G; Cai J; Zhang Y; Qiu J
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGO nanosheet wrapped β-phase NiCu
    Kandhasamy N; Preethi LK; Mani D; Walczak L; Mathews T; Venkatachalam R
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):18546-18562. PubMed ID: 36215010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the Capacitive Charge Storage Mechanism of Nitrogen-Doped Porous Carbons by EQCM and ssNMR.
    Zhang E; Wu YC; Shao H; Klimavicius V; Zhang H; Taberna PL; Grothe J; Buntkowsky G; Xu F; Simon P; Kaskel S
    J Am Chem Soc; 2022 Aug; 144(31):14217-14225. PubMed ID: 35914237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance symmetric reduced graphene oxide/polyaniline/tellurium supercapacitor electrodes.
    Habib H; Wani IS; Husain S
    Nanotechnology; 2023 Jul; 34(41):. PubMed ID: 37402355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons.
    Tsai WY; Taberna PL; Simon P
    J Am Chem Soc; 2014 Jun; 136(24):8722-8. PubMed ID: 24869895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic Properties of GO/RGO Bilayer Electrodes Dictate Their Inter-/Intralayer Intractability to Modulate Their Capacitance Performance.
    Islam T; Hasan MM; Sarker S; Ahammad AJS
    ACS Omega; 2023 Apr; 8(15):14013-14024. PubMed ID: 37091380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors.
    Slesinski A; Sroka S; Fic K; Frackowiak E; Menzel J
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37782-37792. PubMed ID: 35946232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Film with a Controllable Microstructure for Efficient Electrochemical Energy Storage.
    Jiang H; Zhang Y; Sheng F; Li W; Li J; Huang D; Guo P; Wang Y; Zhu H
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13086-13096. PubMed ID: 36853078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the Origin of the Electrochemical Capacity in a Proton-Based Battery H
    Lemaire P; Sel O; Alves Dalla Corte D; Iadecola A; Perrot H; Tarascon JM
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4510-4519. PubMed ID: 31850732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping.
    Pérez Del Pino Á; Rodríguez López M; Ramadan MA; García Lebière P; Logofatu C; Martínez-Rovira I; Yousef I; György E
    Phys Chem Chem Phys; 2019 Dec; 21(45):25175-25186. PubMed ID: 31693021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-Driven Assembly of Bilayered Vanadium Oxide and Graphene Oxide Nanoflakes to Form Two-Dimensional Heterostructure Electrodes for Li-Ion Batteries.
    Andris R; Averianov T; Zachman MJ; Pomerantseva E
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26525-26537. PubMed ID: 37216415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.