These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38432009)
1. Spatiotemporal assessment of groundwater quality and quantity using geostatistical and ensemble artificial intelligence tools. Nourani V; Ghaffari A; Behfar N; Foroumandi E; Zeinali A; Ke CQ; Sankaran A J Environ Manage; 2024 Mar; 355():120495. PubMed ID: 38432009 [TBL] [Abstract][Full Text] [Related]
2. Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer). Vadiati M; Rajabi Yami Z; Eskandari E; Nakhaei M; Kisi O Environ Monit Assess; 2022 Jul; 194(9):619. PubMed ID: 35904687 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of machine learning algorithms for groundwater quality modeling. Sahour S; Khanbeyki M; Gholami V; Sahour H; Kahvazade I; Karimi H Environ Sci Pollut Res Int; 2023 Apr; 30(16):46004-46021. PubMed ID: 36715809 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran. Rostami AA; Isazadeh M; Shahabi M; Nozari H Environ Sci Pollut Res Int; 2019 Dec; 26(34):34993-35009. PubMed ID: 31659709 [TBL] [Abstract][Full Text] [Related]
5. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data. Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648 [TBL] [Abstract][Full Text] [Related]
6. Modeling of nitrate concentration in groundwater using artificial intelligence approach--a case study of Gaza coastal aquifer. Alagha JS; Said MA; Mogheir Y Environ Monit Assess; 2014 Jan; 186(1):35-45. PubMed ID: 23974533 [TBL] [Abstract][Full Text] [Related]
7. Novel approach for predicting groundwater storage loss using machine learning. Kayhomayoon Z; Arya Azar N; Ghordoyee Milan S; Kardan Moghaddam H; Berndtsson R J Environ Manage; 2021 Oct; 296():113237. PubMed ID: 34274616 [TBL] [Abstract][Full Text] [Related]
8. Groundwater quality modeling using a novel hybrid data-intelligence model based on gray wolf optimization algorithm and multi-layer perceptron artificial neural network: a case study in Asadabad Plain, Hamedan, Iran. Ghobadi A; Cheraghi M; Sobhanardakani S; Lorestani B; Merrikhpour H Environ Sci Pollut Res Int; 2022 Feb; 29(6):8716-8730. PubMed ID: 34491495 [TBL] [Abstract][Full Text] [Related]
9. Groundwater Quality: The Application of Artificial Intelligence. Al-Adhaileh MH; Aldhyani THH; Alsaade FW; Al-Yaari M; Albaggar AKA J Environ Public Health; 2022; 2022():8425798. PubMed ID: 36060879 [TBL] [Abstract][Full Text] [Related]
10. Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: a case study of the Nile Delta aquifer, Egypt. Nosair AM; Shams MY; AbouElmagd LM; Hassanein AE; Fryar AE; Abu Salem HS Environ Sci Pollut Res Int; 2022 Feb; 29(6):9318-9340. PubMed ID: 34499306 [TBL] [Abstract][Full Text] [Related]
11. Modeling groundwater quality by using hybrid intelligent and geostatistical methods. Maroufpoor S; Jalali M; Nikmehr S; Shiri N; Shiri J; Maroufpoor E Environ Sci Pollut Res Int; 2020 Aug; 27(22):28183-28197. PubMed ID: 32415439 [TBL] [Abstract][Full Text] [Related]
12. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey. Kavurmaci M; Üstün AK Environ Monit Assess; 2016 Apr; 188(4):258. PubMed ID: 27359000 [TBL] [Abstract][Full Text] [Related]
13. Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater. Hosseini SM; Mahjouri N Environ Monit Assess; 2014 Jun; 186(6):3685-99. PubMed ID: 24493265 [TBL] [Abstract][Full Text] [Related]
14. Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios. Shiri N; Shiri J; Yaseen ZM; Kim S; Chung IM; Nourani V; Zounemat-Kermani M PLoS One; 2021; 16(5):e0251510. PubMed ID: 34043648 [TBL] [Abstract][Full Text] [Related]
15. Viability of two adaptive fuzzy systems based on fuzzy c means and subtractive clustering methods for modeling Cadmium in groundwater resources. Jafarzade N; Kisi O; Yousefi M; Baziar M; Oskoei V; Marufi N; Mohammadi AA Heliyon; 2023 Aug; 9(8):e18415. PubMed ID: 37520981 [TBL] [Abstract][Full Text] [Related]
16. Groundwater salinization risk assessment using combined artificial intelligence models. Dhaoui O; Antunes IM; Benhenda I; Agoubi B; Kharroubi A Environ Sci Pollut Res Int; 2024 May; 31(23):33398-33413. PubMed ID: 38678534 [TBL] [Abstract][Full Text] [Related]
17. Application of machine learning in groundwater quality modeling - A comprehensive review. Haggerty R; Sun J; Yu H; Li Y Water Res; 2023 Apr; 233():119745. PubMed ID: 36812816 [TBL] [Abstract][Full Text] [Related]
18. Mapping of groundwater salinization and modelling using meta-heuristic algorithms for the coastal aquifer of eastern Saudi Arabia. Abba SI; Benaafi M; Usman AG; Ozsahin DU; Tawabini B; Aljundi IH Sci Total Environ; 2023 Feb; 858(Pt 2):159697. PubMed ID: 36334664 [TBL] [Abstract][Full Text] [Related]
19. Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study-Shabestar Plain, Iran. Jeihouni E; Mohammadi M; Eslamian S; Zareian MJ Environ Monit Assess; 2019 Sep; 191(10):620. PubMed ID: 31493149 [TBL] [Abstract][Full Text] [Related]
20. Simulation of time-series groundwater parameters using a hybrid metaheuristic neuro-fuzzy model. Azizpour A; Izadbakhsh MA; Shabanlou S; Yosefvand F; Rajabi A Environ Sci Pollut Res Int; 2022 Apr; 29(19):28414-28430. PubMed ID: 34988802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]