These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38432087)

  • 1. A multi-task fusion model based on a residual-Multi-layer perceptron network for mammographic breast cancer screening.
    Zhong Y; Piao Y; Tan B; Liu J
    Comput Methods Programs Biomed; 2024 Apr; 247():108101. PubMed ID: 38432087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of k-Gabor features from medio-lateral-oblique and craniocaudal view mammograms for improved breast cancer diagnosis.
    Sasikala S; Ezhilarasi M
    J Cancer Res Ther; 2018; 14(5):1036-1041. PubMed ID: 30197344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset.
    Sawyer Lee R; Dunnmon JA; He A; Tang S; RĂ© C; Rubin DL
    J Biomed Inform; 2021 Jan; 113():103656. PubMed ID: 33309994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass segmentation for whole mammograms via attentive multi-task learning framework.
    Hou X; Bai Y; Xie Y; Li Y
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33882475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network.
    Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J
    PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Task Fusion for Improving Mammography Screening Data Classification.
    Wimmer M; Sluiter G; Major D; Lenis D; Berg A; Neubauer T; Buhler K
    IEEE Trans Med Imaging; 2022 Apr; 41(4):937-950. PubMed ID: 34788218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
    Su Y; Liu Q; Xie W; Hu P
    Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep feature-based automatic classification of mammograms.
    Arora R; Rai PK; Raman B
    Med Biol Eng Comput; 2020 Jun; 58(6):1199-1211. PubMed ID: 32200453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks.
    Baccouche A; Garcia-Zapirain B; Elmaghraby AS
    Sci Rep; 2022 Jul; 12(1):12259. PubMed ID: 35851592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
    Al-Antari MA; Al-Masni MA; Kim TS
    Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for breast cancer classification using Multi-DCNNs.
    Ragab DA; Attallah O; Sharkas M; Ren J; Marshall S
    Comput Biol Med; 2021 Apr; 131():104245. PubMed ID: 33556893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Location Soft-Embedding-Based Network With Regional Scoring for Mammogram Classification.
    Han B; Sun L; Li C; Yu Z; Jiang W; Liu W; Tao D; Liu B
    IEEE Trans Med Imaging; 2024 Sep; 43(9):3137-3148. PubMed ID: 38625766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New convolutional neural network model for screening and diagnosis of mammograms.
    Zhang C; Zhao J; Niu J; Li D
    PLoS One; 2020; 15(8):e0237674. PubMed ID: 32790772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Convolutional Neural Networks for Breast Mass Segmentation and Diagnosis in Mammography.
    Li H; Chen D; Nailon WH; Davies ME; Laurenson DI
    IEEE Trans Med Imaging; 2022 Jan; 41(1):3-13. PubMed ID: 34351855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Level Swin Transformer Enabled Automatic Segmentation and Classification of Breast Metastases.
    Masood A; Naseem U; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Algorithm for Breast Mass Classification in Digital Mammography Based on Feature Fusion.
    Zhang Q; Li Y; Zhao G; Man P; Lin Y; Wang M
    J Healthc Eng; 2020; 2020():8860011. PubMed ID: 33425311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.
    Niu J; Li H; Zhang C; Li D
    Med Phys; 2021 Jul; 48(7):3878-3892. PubMed ID: 33982807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammogram mass segmentation and classification based on cross-view VAE and spatial hidden factor disentanglement.
    Ma Y; Peng Y
    Phys Eng Sci Med; 2024 Mar; 47(1):223-238. PubMed ID: 38150059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast cancer diagnosis from contrast-enhanced mammography using multi-feature fusion neural network.
    Qian N; Jiang W; Guo Y; Zhu J; Qiu J; Yu H; Huang X
    Eur Radiol; 2024 Feb; 34(2):917-927. PubMed ID: 37610440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.