BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38433117)

  • 21. [Effects of elevated CO
    Zong YZ; Yang Q; Chang CC; Gou JY; Zhang DS; Hao XY; Gao ZQ
    Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4370-4380. PubMed ID: 34951278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.
    Ribeiro RV; Machado EC; Magalhães Filho JR; Lobo AK; Martins MO; Silveira JA; Yin X; Struik PC
    J Plant Physiol; 2017 Jan; 208():61-69. PubMed ID: 27889522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Winter Night-Warming Improves Post-anthesis Physiological Activities and Sink Strength in Relation to Grain Filling in Winter Wheat (
    Fan Y; Tian Z; Yan Y; Hu C; Abid M; Jiang D; Ma C; Huang Z; Dai T
    Front Plant Sci; 2017; 8():992. PubMed ID: 28659943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated CO
    Zhu C; Zhu J; Zeng Q; Liu G; Xie Z; Tang H; Cao J; Zhao X
    Funct Plant Biol; 2009 Apr; 36(4):291-299. PubMed ID: 32688647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane.
    McCormick AJ; Cramer MD; Watt DA
    Ann Bot; 2008 Jan; 101(1):89-102. PubMed ID: 17942591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity.
    Taylor SH; Long SP
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes.
    Driever SM; Lawson T; Andralojc PJ; Raines CA; Parry MA
    J Exp Bot; 2014 Sep; 65(17):4959-73. PubMed ID: 24963002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential role of sucrose transport gene expression in the photosynthetic and yield response of rice cultivars to future CO
    Zhang J; Li D; Xu X; Ziska LH; Zhu J; Liu G; Zhu C
    Physiol Plant; 2020 Jan; 168(1):218-226. PubMed ID: 31069813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved chloroplast Pi allocation helps sustain electron transfer to enhance photosynthetic low-phosphorus tolerance of wheat.
    Zheng Q; Hu J; Tan Q; Hu H; Sun C; Lei K; Tian Z; Dai T
    Plant Physiol Biochem; 2023 Aug; 201():107880. PubMed ID: 37437346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis.
    Lv X; Zhang Y; Zhang Y; Fan S; Kong L
    BMC Plant Biol; 2020 Jun; 20(1):257. PubMed ID: 32503423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.
    Kataria S; Guruprasad KN
    Plant Physiol Biochem; 2015 Dec; 97():400-11. PubMed ID: 26555898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low sink demand limits photosynthesis under P(i) deficiency.
    Pieters AJ; Paul MJ; Lawlor DW
    J Exp Bot; 2001 May; 52(358):1083-91. PubMed ID: 11432924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioregulation of carbohydrate metabolism in relation to source-sink operation during grain-filling phase of growth in wheat.
    Sidhu P; Singh R
    Indian J Exp Biol; 2002 Sep; 40(9):1060-6. PubMed ID: 12587738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].
    Zhang XC; Yu XF; Ma YF
    Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):673-80. PubMed ID: 21657023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis.
    Makino A; Nakano H; Mae T
    Plant Physiol; 1994 May; 105(1):173-179. PubMed ID: 12232197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sink-Source Balance and Down-Regulation of Photosynthesis in Raphanus sativus: Effects of Grafting, N and CO2.
    Sugiura D; Watanabe CKA; Betsuyaku E; Terashima I
    Plant Cell Physiol; 2017 Dec; 58(12):2043-2056. PubMed ID: 29216401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink.
    Abramson BW; Kachel B; Kramer DM; Ducat DC
    Plant Cell Physiol; 2016 Dec; 57(12):2451-2460. PubMed ID: 27742883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that mitochondrial alternative oxidase respiration supports carbon balance in source leaves of Nicotiana tabacum.
    Chadee A; Mohammad M; Vanlerberghe GC
    J Plant Physiol; 2022 Dec; 279():153840. PubMed ID: 36265227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulation of the hypocotyl sink activity by reciprocal grafting of two Raphanus sativus varieties: its effects on morphological and physiological traits of source leaves and whole-plant growth.
    Sugiura D; Betsuyaku E; Terashima I
    Plant Cell Environ; 2015 Dec; 38(12):2629-40. PubMed ID: 25997499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photosynthesis with single-rooted Amaranthus leaves. II. Regulation of ribuelose-1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase, NAD-malic enzyme and NAD-malate dehydrogenase and coordination between PCR and C4 photosynthetic metabolism in response to changes in the source-sink balance.
    Sawada S; Sakamoto T; Sato M; Kasai M; Usuda H
    Plant Cell Physiol; 2002 Nov; 43(11):1293-301. PubMed ID: 12461129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.