These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38433174)
1. Review in application of blast furnace dust in wastewater treatment: material preparation, integrated process, and mechanism. Zhang W; Jia H; Wang Y; Gao F; Yang G; Wang J Environ Sci Pollut Res Int; 2024 Mar; 31(15):22339-22361. PubMed ID: 38433174 [TBL] [Abstract][Full Text] [Related]
2. Research on modified blast furnace dust in demulsification: The synergistic effect of ferric oxide, hydrophobic carbon, and polysilicate. Zhang Y; Li M; Huang W; Fan K; Li J; Zhong M; Li Z; Li C; Zhang Q J Air Waste Manag Assoc; 2022 May; 72(5):403-419. PubMed ID: 35113008 [TBL] [Abstract][Full Text] [Related]
3. Prepartion and application of novel blast furnace dust based catalytic-ceramic-filler in electrolysis assisted catalytic micro-electrolysis system for ciprofloxacin wastewater treatment. Zhang L; Gao Y; Yue Q; Zhang P; Wang Y; Gao B J Hazard Mater; 2020 Feb; 383():121215. PubMed ID: 31546220 [TBL] [Abstract][Full Text] [Related]
4. A novel recycling way of blast furnace dust from steelworks: Electrocoagulation coupled micro-electrolysis system in indigo wastewater treatment. Guo J; Zhang Y; Wen H; Jia H; Wang J Chemosphere; 2023 Jun; 327():138416. PubMed ID: 36996917 [TBL] [Abstract][Full Text] [Related]
5. Preparation of blast furnace dust particle electrodes and their application in synergistic electrochemical degradation of saline polyvinyl alcohol wastewater. Wang Y; Qi X; Qin Y; An C; Guo J; Wang J Environ Pollut; 2023 Nov; 337():122574. PubMed ID: 37722474 [TBL] [Abstract][Full Text] [Related]
6. Resource utilization of hazardous solid waste blast furnace dust: Efficient wet desulfurization and metal recovery. Yang X; Xie B; Wang F; Ning P; Li K; Jia L; Feng J; Xia F Chemosphere; 2023 Feb; 314():137592. PubMed ID: 36566794 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Micro-Electrolysis Composite Materials from Blast Furnace Dust and Application into Organic Pollutant Degradation. Zeng X; Xie T; Zeng B; Huang L; Li X; Huang W Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500896 [TBL] [Abstract][Full Text] [Related]
8. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method. Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087 [TBL] [Abstract][Full Text] [Related]
9. Use of tar pitch as a binding and reductant of BFD waste to produce reactive materials for environmental applications. Amorim CC; Leão MM; Dutra PR; Tristão JC; Magalhães F; Lago RM Chemosphere; 2014 Aug; 109():143-9. PubMed ID: 24559933 [TBL] [Abstract][Full Text] [Related]
10. Novel combination of iron-carbon composite and Fenton oxidation processes for high-concentration antibiotic wastewater treatment. Wang Z; Zeng Y; Tan Q; Shen Y; Shen L; Sun J; Zhao L; Lin H J Environ Manage; 2024 Mar; 354():120383. PubMed ID: 38382434 [TBL] [Abstract][Full Text] [Related]
11. Process and mechanism of preparing metallized blast furnace burden from metallurgical dust and sludge. Gao X; Chai Y; Wang Y; Luo G; An S; Peng J Sci Rep; 2024 Apr; 14(1):9760. PubMed ID: 38684847 [TBL] [Abstract][Full Text] [Related]
12. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust. Ye L; Peng Z; Ye Q; Wang L; Augustine R; Perez M; Liu Y; Liu M; Tang H; Rao M; Li G; Jiang T Waste Manag; 2021 Nov; 135():389-396. PubMed ID: 34610538 [TBL] [Abstract][Full Text] [Related]
13. Valorisation of residual iron dust as Fenton catalyst for pulp and paper wastewater treatment. Ribeiro JP; Sarinho L; Neves MC; Nunes MI Environ Pollut; 2022 Oct; 310():119850. PubMed ID: 35944783 [TBL] [Abstract][Full Text] [Related]
14. Preparation of Fe/C-MgCO Han Y; Su Z; Ma X; Fu X; Xu H; Liu L; Liu M Environ Sci Pollut Res Int; 2023 Jan; 30(5):13372-13392. PubMed ID: 36131176 [TBL] [Abstract][Full Text] [Related]
15. Research on Reduction of Selected Iron-Bearing Waste Materials. Mróz J; Konstanciak A; Warzecha M; Więcek M; Hutny AM Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921233 [TBL] [Abstract][Full Text] [Related]
16. A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust. Chen D; Guo H; Li P; Wu F; Lv Y; Yan B; Zhao W; Su Y Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431725 [TBL] [Abstract][Full Text] [Related]
17. Steel wastes as versatile materials for treatment of biorefractory wastewaters. Dos Santos SV; Amorim CC; Andrade LN; Calixto NC; Henriques AB; Ardisson JD; Leão MM Environ Sci Pollut Res Int; 2015 Jan; 22(2):882-93. PubMed ID: 25196961 [TBL] [Abstract][Full Text] [Related]
18. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation. Zhang Z Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007 [TBL] [Abstract][Full Text] [Related]
19. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
20. From waste to waste: iron blast furnace slag for heavy metal ions removal from aqueous system. Abdelbasir SM; Khalek MAA Environ Sci Pollut Res Int; 2022 Aug; 29(38):57964-57979. PubMed ID: 35355191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]