These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 38433189)
1. Natural language processing to identify lupus nephritis phenotype in electronic health records. Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189 [TBL] [Abstract][Full Text] [Related]
2. Word2Vec inversion and traditional text classifiers for phenotyping lupus. Turner CA; Jacobs AD; Marques CK; Oates JC; Kamen DL; Anderson PE; Obeid JS BMC Med Inform Decis Mak; 2017 Aug; 17(1):126. PubMed ID: 28830409 [TBL] [Abstract][Full Text] [Related]
3. Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms. Jorge A; Castro VM; Barnado A; Gainer V; Hong C; Cai T; Cai T; Carroll R; Denny JC; Crofford L; Costenbader KH; Liao KP; Karlson EW; Feldman CH Semin Arthritis Rheum; 2019 Aug; 49(1):84-90. PubMed ID: 30665626 [TBL] [Abstract][Full Text] [Related]
4. Using a Multi-Institutional Pediatric Learning Health System to Identify Systemic Lupus Erythematosus and Lupus Nephritis: Development and Validation of Computable Phenotypes. Wenderfer SE; Chang JC; Goodwin Davies A; Luna IY; Scobell R; Sears C; Magella B; Mitsnefes M; Stotter BR; Dharnidharka VR; Nowicki KD; Dixon BP; Kelton M; Flynn JT; Gluck C; Kallash M; Smoyer WE; Knight A; Sule S; Razzaghi H; Bailey LC; Furth SL; Forrest CB; Denburg MR; Atkinson MA Clin J Am Soc Nephrol; 2022 Jan; 17(1):65-74. PubMed ID: 34732529 [TBL] [Abstract][Full Text] [Related]
5. Using natural language processing to identify opioid use disorder in electronic health record data. Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420 [TBL] [Abstract][Full Text] [Related]
6. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
7. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression. Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275 [TBL] [Abstract][Full Text] [Related]
8. Ensembles of natural language processing systems for portable phenotyping solutions. Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273 [TBL] [Abstract][Full Text] [Related]
9. Development of a natural language processing algorithm to detect chronic cough in electronic health records. Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999 [TBL] [Abstract][Full Text] [Related]
10. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
11. A Comprehensive Natural Language Processing Pipeline for the Chronic Lupus Disease. Lilli L; Bosello SL; Antenucci L; Patarnello S; Ortolan A; Lenkowicz J; Gorini M; Castellino G; Cesario A; D'Agostino MA; Masciocchi C Stud Health Technol Inform; 2024 Aug; 316():909-913. PubMed ID: 39176940 [TBL] [Abstract][Full Text] [Related]
12. Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing. Sivarajkumar S; Tam TYC; Mohammad HA; Viggiano S; Oniani D; Visweswaran S; Wang Y J Am Med Inform Assoc; 2024 Oct; 31(10):2217-2227. PubMed ID: 39001795 [TBL] [Abstract][Full Text] [Related]
13. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment. Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046 [TBL] [Abstract][Full Text] [Related]
14. Automatically identifying social isolation from clinical narratives for patients with prostate Cancer. Zhu VJ; Lenert LA; Bunnell BE; Obeid JS; Jefferson M; Halbert CH BMC Med Inform Decis Mak; 2019 Mar; 19(1):43. PubMed ID: 30871518 [TBL] [Abstract][Full Text] [Related]
15. Natural language processing of clinical notes for identification of critical limb ischemia. Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639 [TBL] [Abstract][Full Text] [Related]
16. Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records. Wu W; Holkeboer KJ; Kolawole TO; Carbone L; Mahmoudi E Health Serv Res; 2023 Dec; 58(6):1292-1302. PubMed ID: 37534741 [TBL] [Abstract][Full Text] [Related]
17. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures. Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741 [TBL] [Abstract][Full Text] [Related]
18. Natural language processing of radiology reports for identification of skeletal site-specific fractures. Wang Y; Mehrabi S; Sohn S; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):73. PubMed ID: 30943952 [TBL] [Abstract][Full Text] [Related]
19. Development of an automated phenotyping algorithm for hepatorenal syndrome. Koola JD; Davis SE; Al-Nimri O; Parr SK; Fabbri D; Malin BA; Ho SB; Matheny ME J Biomed Inform; 2018 Apr; 80():87-95. PubMed ID: 29530803 [TBL] [Abstract][Full Text] [Related]
20. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals. Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]