These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38433230)

  • 21. Differences in motor imagery abilities in active and sedentary individuals: new insights from backward-walking imagination.
    Mandolesi L; Passarello N; Lucidi F
    Psychol Res; 2024 Mar; 88(2):499-508. PubMed ID: 37773349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.
    Duann JR; Chiou JC
    PLoS One; 2016; 11(9):e0162546. PubMed ID: 27636359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortical activation and BCI performance during brief tactile imagery: A comparative study with motor imagery.
    Sengupta P; Lakshminarayanan K
    Behav Brain Res; 2024 Feb; 459():114760. PubMed ID: 37979923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The neural substrates for the different modalities of movement imagery.
    Jiang D; Edwards MG; Mullins P; Callow N
    Brain Cogn; 2015 Jul; 97():22-31. PubMed ID: 25956141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinesthetic illusion induced by visual stimulation influences sensorimotor event-related desynchronization in stroke patients with severe upper-limb paralysis: A pilot study.
    Okawada M; Kaneko F; Shindo K; Yoneta M; Sakai K; Okuyama K; Akaboshi K; Liu M
    Restor Neurol Neurosci; 2020; 38(6):455-465. PubMed ID: 33325415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural decoding of gait phases during motor imagery and improvement of the decoding accuracy by concurrent action observation.
    Yokoyama H; Kaneko N; Watanabe K; Nakazawa K
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34082405
    [No Abstract]   [Full Text] [Related]  

  • 28. Event-Related Desynchronization Induced by Tactile Imagery: an EEG Study.
    Yakovlev L; Syrov N; Miroshnikov A; Lebedev M; Kaplan A
    eNeuro; 2023 Jun; 10(6):. PubMed ID: 37263791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice?
    Vasilyev AN; Nuzhdin YO; Kaplan AY
    Brain Sci; 2021 Sep; 11(9):. PubMed ID: 34573253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor imagery of gait: a quantitative approach.
    Bakker M; de Lange FP; Stevens JA; Toni I; Bloem BR
    Exp Brain Res; 2007 May; 179(3):497-504. PubMed ID: 17211663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EEG time-frequency analysis provides arguments for arm swing support in human gait control.
    Weersink JB; Maurits NM; de Jong BM
    Gait Posture; 2019 May; 70():71-78. PubMed ID: 30826690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.
    Kondo T; Saeki M; Hayashi Y; Nakayashiki K; Takata Y
    Hum Mov Sci; 2015 Oct; 43():239-49. PubMed ID: 25467185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson's disease.
    Kühn AA; Doyle L; Pogosyan A; Yarrow K; Kupsch A; Schneider GH; Hariz MI; Trottenberg T; Brown P
    Brain; 2006 Mar; 129(Pt 3):695-706. PubMed ID: 16364953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two assessments to evaluate imagery ability: translation, test-retest reliability and concurrent validity of the German KVIQ and Imaprax.
    Schuster C; Lussi A; Wirth B; Ettlin T
    BMC Med Res Methodol; 2012 Aug; 12():127. PubMed ID: 22905778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts.
    Sugino H; Ushiyama J
    Front Sports Act Living; 2021; 3():757308. PubMed ID: 34805979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Handedness effects on motor imagery during kinesthetic and visual-motor conditions.
    Zapała D; Iwanowicz P; Francuz P; Augustynowicz P
    Sci Rep; 2021 Jun; 11(1):13112. PubMed ID: 34162936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brief Visual Deprivation Effects on Brain Oscillations During Kinesthetic and Visual-motor Imagery.
    Zapała D; Augustynowicz P; Tokovarov M; Iwanowicz P; Droździel P
    Neuroscience; 2023 Nov; 532():37-49. PubMed ID: 37625688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency Specific Cortical Dynamics During Motor Imagery Are Influenced by Prior Physical Activity.
    Wriessnegger SC; Brunner C; Müller-Putz GR
    Front Psychol; 2018; 9():1976. PubMed ID: 30410454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.