These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38433333)

  • 1. Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes.
    Bergström AK; Creed IF; Paltsev A; de Wit HA; Lau DCP; Drakare S; Vrede T; Isles PDF; Jonsson A; Geibrink E; Kortelainen P; Vuorenmaa J; Vuorio K; Kahilainen KK; Hessen DO
    Glob Chang Biol; 2024 Mar; 30(3):e17220. PubMed ID: 38433333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lowered nutritional quality of plankton caused by global environmental changes.
    Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK
    Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The jellification of north temperate lakes.
    Jeziorski A; Tanentzap AJ; Yan ND; Paterson AM; Palmer ME; Korosi JB; Rusak JA; Arts MT; Keller WB; Ingram R; Cairns A; Smol JP
    Proc Biol Sci; 2015 Jan; 282(1798):20142449. PubMed ID: 25411451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar zooplankton responses to low pH and calcium may impair long-term recovery from acidification.
    Ross AJ; Arnott SE
    Ecol Appl; 2022 Apr; 32(3):e2512. PubMed ID: 34877727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recovery of crustacean zooplankton from acidification depends on lake type.
    Pilotto F; Walseng B; Jensen TC; Schartau AK
    Glob Chang Biol; 2023 Nov; 29(21):6066-6076. PubMed ID: 37609877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake.
    Matsuzaki SS; Suzuki K; Kadoya T; Nakagawa M; Takamura N
    Ecology; 2018 Sep; 99(9):2025-2036. PubMed ID: 29884987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia.
    Noskov YA; Manasypov RM; Ermolaeva NI; Antonets DV; Shirokova LS; Pokrovsky OS
    Sci Total Environ; 2024 Apr; 922():171284. PubMed ID: 38432389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes.
    Havens KE
    ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Community characteristics of crustacean zooplankton and its relationship with environmental factors in Suzhou Industrial Park, Jiangsu Province, China].
    Yu TT; Zhu Y; Xu L; Zhao L; Qian WJ; Chang Q; Wang GX; Chen JQ
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2534-42. PubMed ID: 26685619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of intensive fishing on the structure of zooplankton communities and mercury levels.
    Masson S; Tremblay A
    Sci Total Environ; 2003 Mar; 304(1-3):377-90. PubMed ID: 12663198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zooplankton and its grazing as indicators of trophic status in Dutch lakes.
    Gulati RD
    Environ Monit Assess; 1983 Sep; 3(3-4):343-54. PubMed ID: 24259100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes.
    Zhang Y; Feng K; Song D; Wang Q; Ye S; Liu J; Kainz MJ
    Sci Total Environ; 2024 Feb; 913():169562. PubMed ID: 38142998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diurnal Changes of Zooplankton Community Reduction Rate at Lake Outlets and Related Environmental Factors.
    Czerniawski R; Sługocki Ł; Kowalska-Góralska M
    PLoS One; 2016; 11(7):e0158837. PubMed ID: 27392017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of zooplankton community in Mediterranean-climate lakes.
    Cherbi M; Lek-Ang S; Lek S; Arab A
    C R Biol; 2008 Sep; 331(9):692-702. PubMed ID: 18722989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Browning-induced changes in trophic functioning of planktonic food webs in temperate and boreal lakes: insights from fatty acids.
    Strandberg U; Hiltunen M; Creed IF; Arts MT; Kankaala P
    Oecologia; 2023 Jan; 201(1):183-197. PubMed ID: 36520221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predation-driven dynamics of zooplankton and phytoplankton communities in a whole-lake experiment.
    Elser JJ; Carpenter SR
    Oecologia; 1988 Jun; 76(1):148-154. PubMed ID: 28312392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of plankton indices to lake trophic conditions.
    Ochocka A; Pasztaleniec A
    Environ Monit Assess; 2016 Nov; 188(11):622. PubMed ID: 27752916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.
    Tao Y; Yu J; Xue B; Yao S; Wang S
    Sci Total Environ; 2017 Apr; 583():447-457. PubMed ID: 28110880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.