BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 38434238)

  • 1. Harnessing the power of Microscale AcoustoFluidics: A perspective based on BAW cancer diagnostics.
    Harshbarger CL
    Biomicrofluidics; 2024 Jan; 18(1):011304. PubMed ID: 38434238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation.
    Bruus H; Dual J; Hawkes J; Hill M; Laurell T; Nilsson J; Radel S; Sadhal S; Wiklund M
    Lab Chip; 2011 Nov; 11(21):3579-80. PubMed ID: 21952310
    [No Abstract]   [Full Text] [Related]  

  • 9. Self-Aligned Interdigitated Transducers for Acoustofluidics.
    Ma Z; Teo AJT; Tan SH; Ai Y; Nguyen NT
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
    Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ
    Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory and modeling of nonperturbative effects in thermoviscous acoustofluidics.
    Joergensen JH; Bruus H
    Phys Rev E; 2023 Jan; 107(1-2):015106. PubMed ID: 36797916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing.
    Rasouli R; Villegas KM; Tabrizian M
    Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming.
    Lu X; Soto F; Li J; Li T; Liang Y; Wang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38870-38876. PubMed ID: 29028308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation.
    Gedge M; Hill M
    Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic methods in cell analysis.
    Xie Y; Bachman H; Huang TJ
    Trends Analyt Chem; 2019 Aug; 117():280-290. PubMed ID: 32461706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic separation of circulating tumor cells.
    Li P; Mao Z; Peng Z; Zhou L; Chen Y; Huang PH; Truica CI; Drabick JJ; El-Deiry WS; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4970-5. PubMed ID: 25848039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.