These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38434809)

  • 1. A Novel Biosurfactant-Based Oil Spill Response Dispersant for Efficient Application under Temperate and Arctic Conditions.
    Farooq U; Szczybelski A; Ferreira FC; Faria NT; Netzer R
    ACS Omega; 2024 Feb; 9(8):9503-9515. PubMed ID: 38434809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cross-comparison of biosurfactants as marine oil spill dispersants: Governing factors, synergetic effects and fates.
    Cai Q; Zhu Z; Chen B; Lee K; Nedwed TJ; Greer C; Zhang B
    J Hazard Mater; 2021 Aug; 416():126122. PubMed ID: 34492916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton.
    Almeda R; Hyatt C; Buskey EJ
    Ecotoxicol Environ Saf; 2014 Aug; 106():76-85. PubMed ID: 24836881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Interactive Effects of Crude Oil and Corexit 9500 on Their Biodegradation in Arctic Seawater.
    Gofstein TR; Perkins M; Field J; Leigh MB
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersant Corexit 9500A and chemically dispersed crude oil decreases the growth rates of meroplanktonic barnacle nauplii (Amphibalanus improvisus) and tornaria larvae (Schizocardium sp.).
    Almeda R; Bona S; Foster CR; Buskey EJ
    Mar Environ Res; 2014 Aug; 99():212-7. PubMed ID: 25028258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of crude oil from highly contaminated natural surfaces with corexit dispersants.
    Tansel B; Lee M
    J Environ Manage; 2019 Oct; 247():363-370. PubMed ID: 31252235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion of oil into water using lecithin-Tween 80 blends: The role of spontaneous emulsification.
    Riehm DA; Rokke DJ; Paul PG; Lee HS; Vizanko BS; McCormick AV
    J Colloid Interface Sci; 2017 Feb; 487():52-59. PubMed ID: 27744169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-based dispersants for fuel oil spill remediation based on the Hydrophilic-Lipophilic Deviation (HLD) concept and Box-Behnken design.
    Nawavimarn P; Rongsayamanont W; Subsanguan T; Luepromchai E
    Environ Pollut; 2021 Sep; 285():117378. PubMed ID: 34051565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants.
    Belore RC; Trudel K; Mullin JV; Guarino A
    Mar Pollut Bull; 2009 Jan; 58(1):118-28. PubMed ID: 19007943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial tension between oil and seawater as a function of dispersant dosage.
    Brandvik PJ; Daling PS; Leirvik F; Krause DF
    Mar Pollut Bull; 2019 Jun; 143():109-114. PubMed ID: 31789144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of dispersant on crude oil content of airborne fine particulate matter emitted from seawater after an oil spill.
    Afshar-Mohajer N; Lam A; Dora L; Katz J; Rule AM; Koehler K
    Chemosphere; 2020 Oct; 256():127063. PubMed ID: 32438130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of dispersants' dynamic interfacial tension in effective crude oil spill dispersion.
    Riehm DA; McCormick AV
    Mar Pollut Bull; 2014 Jul; 84(1-2):155-63. PubMed ID: 24889318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments.
    Riehm DA; Neilsen JE; Bothun GD; John VT; Raghavan SR; McCormick AV
    Mar Pollut Bull; 2015 Dec; 101(1):92-97. PubMed ID: 26589641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Corexit 9500A on Mississippi Canyon crude oil weathering patterns using artificial and natural seawater.
    Olson GM; Gao H; Meyer BM; Miles MS; Overton EB
    Heliyon; 2017 Mar; 3(3):e00269. PubMed ID: 28349129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera).
    Rico-Martínez R; Snell TW; Shearer TL
    Environ Pollut; 2013 Feb; 173():5-10. PubMed ID: 23195520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant.
    Afshar-Mohajer N; Fox MA; Koehler K
    Sci Total Environ; 2019 Mar; 654():924-932. PubMed ID: 30453262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryotoxicity of mixtures of weathered crude oil collected from the Gulf of Mexico and Corexit 9500 in mallard ducks (Anas platyrhynchos).
    Finch BE; Wooten KJ; Faust DR; Smith PN
    Sci Total Environ; 2012 Jun; 426():155-9. PubMed ID: 22542232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant.
    Rongsayamanont W; Soonglerdsongpha S; Khondee N; Pinyakong O; Tongcumpou C; Sabatini DA; Luepromchai E
    J Hazard Mater; 2017 Jul; 334():168-177. PubMed ID: 28411538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersant and salinity effects on weathering and acute toxicity of South Louisiana crude oil.
    Kuhl AJ; Nyman JA; Kaller MD; Green CC
    Environ Toxicol Chem; 2013 Nov; 32(11):2611-20. PubMed ID: 24377102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas.
    DeMiguel-Jiménez L; Etxebarria N; Lekube X; Izagirre U; Marigómez I
    Mar Pollut Bull; 2021 Nov; 172():112922. PubMed ID: 34523425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.