These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 38435522)

  • 21. Revolutionizing enzyme engineering through artificial intelligence and machine learning.
    Singh N; Malik S; Gupta A; Srivastava KR
    Emerg Top Life Sci; 2021 May; 5(1):113-125. PubMed ID: 33835131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Informed training set design enables efficient machine learning-assisted directed protein evolution.
    Wittmann BJ; Yue Y; Arnold FH
    Cell Syst; 2021 Nov; 12(11):1026-1045.e7. PubMed ID: 34416172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein engineering via Bayesian optimization-guided evolutionary algorithm and robotic experiments.
    Hu R; Fu L; Chen Y; Chen J; Qiao Y; Si T
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36562723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling a Live Cell Directed Evolution Assay with Coevolutionary Landscapes to Engineer an Improved Fluorescent Rhodopsin Chloride Sensor.
    Chi H; Zhou Q; Tutol JN; Phelps SM; Lee J; Kapadia P; Morcos F; Dodani SC
    ACS Synth Biol; 2022 Apr; 11(4):1627-1638. PubMed ID: 35389621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilitating Machine Learning-Guided Protein Engineering with Smart Library Design and Massively Parallel Assays.
    Chu HY; Wong ASL
    Adv Genet (Hoboken); 2021 Dec; 2(4):2100038. PubMed ID: 36619853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting higher-order mutational effects in an RNA enzyme by machine learning of high-throughput experimental data.
    Beck JD; Roberts JM; Kitzhaber JM; Trapp A; Serra E; Spezzano F; Hayden EJ
    Front Mol Biosci; 2022; 9():893864. PubMed ID: 36046603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact.
    Rouvinen J; Andberg M; Pääkkönen J; Hakulinen N; Koivula A
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6215-6228. PubMed ID: 34410440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rank-ordering of known enzymes as starting points for re-engineering novel substrate activity using a convolutional neural network.
    Upadhyay V; Boorla VS; Maranas CD
    Metab Eng; 2023 Jul; 78():171-182. PubMed ID: 37301359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning Paves the Way for High Entropy Compounds Exploration: Challenges, Progress, and Outlook.
    Wan X; Li Z; Yu W; Wang A; Ke X; Guo H; Su J; Li L; Gui Q; Zhao S; Robertson J; Zhang Z; Guo Y
    Adv Mater; 2023 Sep; ():e2305192. PubMed ID: 37688451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering.
    Gantz M; Mathis SV; Nintzel FEH; Lio P; Hollfelder F
    Faraday Discuss; 2024 Aug; ():. PubMed ID: 39133073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo design of biocatalysts.
    Bolon DN; Voigt CA; Mayo SL
    Curr Opin Chem Biol; 2002 Apr; 6(2):125-9. PubMed ID: 12038994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational evolutionary design: the theory of in vitro protein evolution.
    Voigt CA; Kauffman S; Wang ZG
    Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering the Substrate Specificity of Toluene Degrading Enzyme XylM Using Biosensor XylS and Machine Learning.
    Ogawa Y; Saito Y; Yamaguchi H; Katsuyama Y; Ohnishi Y
    ACS Synth Biol; 2023 Feb; 12(2):572-582. PubMed ID: 36734676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Deep Learning Tools Can Help Protein Engineers Find Good Sequences.
    Osadchy M; Kolodny R
    J Phys Chem B; 2021 Jun; 125(24):6440-6450. PubMed ID: 34105961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing generative AI to decode enzyme catalysis and evolution for enhanced engineering.
    Xie WJ; Warshel A
    Natl Sci Rev; 2023 Dec; 10(12):nwad331. PubMed ID: 38299119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning protein fitness landscapes with deep mutational scanning data from multiple sources.
    Chen L; Zhang Z; Li Z; Li R; Huo R; Chen L; Wang D; Luo X; Chen K; Liao C; Zheng M
    Cell Syst; 2023 Aug; 14(8):706-721.e5. PubMed ID: 37591206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering proteinase K using machine learning and synthetic genes.
    Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J
    BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulation of enzyme properties by noncanonical amino acid incorporation.
    Zheng S; Kwon I
    Biotechnol J; 2012 Jan; 7(1):47-60. PubMed ID: 22121038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Advances in machine learning for predicting protein functions].
    Chi Y; Li C; Feng X
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2141-2157. PubMed ID: 37401587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.