These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38435551)

  • 1. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton.
    Tang J; Zhao L; Wu M; Jiang Z; Cao J; Bao X
    PeerJ Comput Sci; 2024; 10():e1881. PubMed ID: 38435551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Continuous Locomotion Mode Recognition and Transition Prediction for Human With Lower Limb Exoskeleton.
    Ma X; Liu Y; Zhang X; Masia L; Song Q
    IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39288043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU.
    Han Y; Liu C; Yan L; Ren L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate CNN Model for Human Locomotion Activity Recognition with a Wearable Exoskeleton Robot.
    Son CS; Kang WS
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living.
    Mohamed SA; Martinez-Hernandez U
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Surface Deformation Myography (sDMG) System for Recognition of Locomotion Modes.
    Sun H; Peng X; Wang J; Liu J; Fu T; He C
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4577-4587. PubMed ID: 38776201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust human locomotion and localization activity recognition over multisensory.
    Khan D; Alonazi M; Abdelhaq M; Al Mudawi N; Algarni A; Jalal A; Liu H
    Front Physiol; 2024; 15():1344887. PubMed ID: 38449788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-board Training Strategy for IMU-Based Real-Time Locomotion Recognition of Transtibial Amputees With Robotic Prostheses.
    Xu D; Wang Q
    Front Neurorobot; 2020; 14():47. PubMed ID: 33192430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait Recognition and Assistance Parameter Prediction Determination Based on Kinematic Information Measured by Inertial Measurement Units.
    Xiang Q; Wang J; Liu Y; Guo S; Liu L
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.
    Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.