These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38435551)
21. Deep learning with an attention mechanism for continuous biomechanical motion estimation across varied activities. Ding G; Plummer A; Georgilas I Front Bioeng Biotechnol; 2022; 10():1021505. PubMed ID: 36324889 [TBL] [Abstract][Full Text] [Related]
22. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables. Sherratt F; Plummer A; Iravani P Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842 [TBL] [Abstract][Full Text] [Related]
23. A Method of Detecting Human Movement Intentions in Real Environments. Liu YX; Wan ZY; Wang R; Gutierrez-Farewik EM IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941205 [TBL] [Abstract][Full Text] [Related]
24. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
25. Stair Recognition for Robotic Exoskeleton Control using Computer Vision and Deep Learning. Kurbis AG; Laschowski B; Mihailidis A IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176138 [TBL] [Abstract][Full Text] [Related]
26. Real-Time Hierarchical Classification of Time Series Data for Locomotion Mode Detection. Narayan A; Reyes FA; Ren M; Haoyong Y IEEE J Biomed Health Inform; 2022 Apr; 26(4):1749-1760. PubMed ID: 34410932 [TBL] [Abstract][Full Text] [Related]
27. Wearable Iontronic FMG for Classification of Muscular Locomotion. Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817 [TBL] [Abstract][Full Text] [Related]
28. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors. Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951 [TBL] [Abstract][Full Text] [Related]
29. Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons. Laschowski B; McNally W; Wong A; McPhee J IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():868-873. PubMed ID: 31374739 [TBL] [Abstract][Full Text] [Related]
30. Performance of multiple neural networks in predicting lower limb joint moments using wearable sensors. Altai Z; Boukhennoufa I; Zhai X; Phillips A; Moran J; Liew BXW Front Bioeng Biotechnol; 2023; 11():1215770. PubMed ID: 37583712 [TBL] [Abstract][Full Text] [Related]
31. Intent recognition in a powered lower limb prosthesis using time history information. Young AJ; Simon AM; Fey NP; Hargrove LJ Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324 [TBL] [Abstract][Full Text] [Related]
32. Locomotion Mode Recognition with Inertial Signals for Hip Joint Exoskeleton. Du G; Zeng J; Gong C; Zheng E Appl Bionics Biomech; 2021; 2021():6673018. PubMed ID: 34335872 [TBL] [Abstract][Full Text] [Related]
33. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. Camargo J; Ramanathan A; Flanagan W; Young A J Biomech; 2021 Apr; 119():110320. PubMed ID: 33677231 [TBL] [Abstract][Full Text] [Related]
34. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses. Liu M; Wang D; Helen Huang H IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962 [TBL] [Abstract][Full Text] [Related]
35. Improving Walking Assistance Efficiency in Real-World Scenarios with Soft Exosuits Using Locomotion Mode Detection. Zhang X; Tricomi E; Missiroli F; Lotti N; Ma X; Masia L IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941239 [TBL] [Abstract][Full Text] [Related]
36. A Locomotion Mode Recognition Algorithm Using Adaptive Dynamic Movement Primitives. Eken H; Lanotte F; Papapicco V; Penna MF; Gruppioni E; Trigili E; Crea S; Vitiello N IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4318-4328. PubMed ID: 37883286 [TBL] [Abstract][Full Text] [Related]
37. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055 [TBL] [Abstract][Full Text] [Related]
38. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support. Li G; Li Z; Su CY; Xu T IEEE Trans Cybern; 2023 Nov; 53(11):7367-7379. PubMed ID: 37030717 [TBL] [Abstract][Full Text] [Related]
39. Continuous Locomotion Mode and Task Identification for an Assistive Exoskeleton Based on Neuromuscular-Mechanical Fusion. Liu Y; Chen C; Wang Z; Tian Y; Wang S; Xiao Y; Yang F; Wu X Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391636 [TBL] [Abstract][Full Text] [Related]
40. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons. Moreira L; Figueiredo J; Cerqueira J; Santos CP Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]