These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38436202)

  • 1. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries.
    Lei YJ; Zhao L; Lai WH; Huang Z; Sun B; Jaumaux P; Sun K; Wang YX; Wang G
    Chem Soc Rev; 2024 Apr; 53(8):3829-3895. PubMed ID: 38436202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries.
    Mei J; Liao T; Sun Z
    Chemistry; 2022 Feb; 28(11):e202103938. PubMed ID: 34881478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries.
    Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z
    Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage.
    Fang Y; Luan D; Gao S; Lou XWD
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20102-20118. PubMed ID: 33955137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries.
    Ni W
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries.
    Pei C; Xiong F; Yin Y; Liu Z; Tang H; Sun R; An Q; Mai L
    Small; 2021 Jan; 17(3):e2004108. PubMed ID: 33354934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium Tetrasulfide for Next-Generation Rechargeable Batteries: Advances and Challenges.
    Yao K; Wu M; Chen D; Liu C; Xu C; Yang D; Yao H; Liu L; Zheng Y; Rui X
    Chem Rec; 2022 Oct; 22(10):e202200117. PubMed ID: 35789529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries.
    Li B; Xu H; Ma Y; Yang S
    Nanoscale Horiz; 2019 Jan; 4(1):77-98. PubMed ID: 32254146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.
    Mai L; Sheng J; Xu L; Tan S; Meng J
    Acc Chem Res; 2018 Apr; 51(4):950-959. PubMed ID: 29620351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective.
    Zeng L; Zhu J; Chu PK; Huang L; Wang J; Zhou G; Yu XF
    Adv Mater; 2022 Dec; 34(49):e2204636. PubMed ID: 35903947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodine Redox Chemistry in Rechargeable Batteries.
    Ma J; Liu M; He Y; Zhang J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12636-12647. PubMed ID: 32939916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries.
    Zhao Y; Feng K; Yu Y
    Adv Sci (Weinh); 2024 Feb; 11(7):e2308087. PubMed ID: 38063856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Materials to Address the Lithium Battery Challenges.
    Rojaee R; Shahbazian-Yassar R
    ACS Nano; 2020 Mar; 14(3):2628-2658. PubMed ID: 32083832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.