These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38436298)

  • 21. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials.
    Belade E; Chrusciel S; Armand L; Simon-Deckers A; Bussy C; Caramelle P; Gagliolo JM; Boyer L; Lanone S; Pairon JC; Kermanizadeh A; Boczkowski J
    Arch Toxicol; 2015 Sep; 89(9):1543-56. PubMed ID: 25098341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Size and Asymmetry on Catalase-Powered Silica Micro/nanomotors.
    Sun J; Wu J; Ju H
    Chem Asian J; 2024 Jan; 19(2):e202300900. PubMed ID: 37990785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro/nanomotors for neuromodulation.
    Huang Y; Peng F
    Nanoscale; 2024 Jun; 16(23):11019-11027. PubMed ID: 38804105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic micro/nanomotors in biomedicine: from single motors to swarms.
    Chen S; Prado-Morales C; Sánchez-deAlcázar D; Sánchez S
    J Mater Chem B; 2024 Mar; 12(11):2711-2719. PubMed ID: 38239179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Propelled Micro-/Nanomotors Based on Controlled Assembled Architectures.
    Lin X; Wu Z; Wu Y; Xuan M; He Q
    Adv Mater; 2016 Feb; 28(6):1060-72. PubMed ID: 26421653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations.
    Lee J; Mahendra S; Alvarez PJ
    ACS Nano; 2010 Jul; 4(7):3580-90. PubMed ID: 20695513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications.
    Liu T; Xie L; Price CH; Liu J; He Q; Kong B
    Chem Soc Rev; 2022 Dec; 51(24):10083-10119. PubMed ID: 36416191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards a systematic use of effect biomarkers in population and occupational biomonitoring.
    Zare Jeddi M; Hopf NB; Viegas S; Price AB; Paini A; van Thriel C; Benfenati E; Ndaw S; Bessems J; Behnisch PA; Leng G; Duca RC; Verhagen H; Cubadda F; Brennan L; Ali I; David A; Mustieles V; Fernandez MF; Louro H; Pasanen-Kase R
    Environ Int; 2021 Jan; 146():106257. PubMed ID: 33395925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Occupational exposure limits for manufactured nanomaterials, a systematic review.
    Mihalache R; Verbeek J; Graczyk H; Murashov V; van Broekhuizen P
    Nanotoxicology; 2017 Feb; 11(1):7-19. PubMed ID: 27894206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications.
    Choi H; Yi J; Cho SH; Hahn SK
    Biomaterials; 2021 Dec; 279():121201. PubMed ID: 34715638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Machine Learning to Predict Adverse Effects of Metallic Nanomaterials to Various Aquatic Organisms.
    Zhou Y; Wang Y; Peijnenburg W; Vijver MG; Balraadjsing S; Fan W
    Environ Sci Technol; 2023 Nov; 57(46):17786-17795. PubMed ID: 36730792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead.
    Gonzalez L; Kirsch-Volders M
    Mutat Res Rev Mutat Res; 2016; 768():14-26. PubMed ID: 27234560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation.
    Pilou M; Vaquero-Moralejo C; Jaén M; Lopez De Ipiña Peña J; Neofytou P; Housiadas C
    Int J Occup Environ Health; 2016 Jul; 22(3):249-258. PubMed ID: 27670588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application of self-propelled micro-/nanomotors in active targeted drug delivery].
    Liu M; Tu B; Liu L; Chen B; Tu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Mar; 40(3):445-452. PubMed ID: 32376586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review.
    Anastasiadis SH; Chrissopoulou K; Stratakis E; Kavatzikidou P; Kaklamani G; Ranella A
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Propelled Micro/Nanomotors for On-Demand Biomedical Cargo Transportation.
    Xu D; Wang Y; Liang C; You Y; Sanchez S; Ma X
    Small; 2020 Jul; 16(27):e1902464. PubMed ID: 31464072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Key challenges for nanotechnology: Standardization of ecotoxicity testing.
    Cerrillo C; Barandika G; Igartua A; Areitioaurtena O; Mendoza G
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Apr; 35(2):104-126. PubMed ID: 28481723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-bio effects: interaction of nanomaterials with cells.
    Cheng LC; Jiang X; Wang J; Chen C; Liu RS
    Nanoscale; 2013 May; 5(9):3547-69. PubMed ID: 23532468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress toward Catalytic Micro- and Nanomotors for Biomedical and Environmental Applications.
    Safdar M; Khan SU; Jänis J
    Adv Mater; 2018 Jun; 30(24):e1703660. PubMed ID: 29411445
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.