BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38436411)

  • 1. Modeling Healthy and Dysbiotic Vaginal Microenvironments in a Human Vagina-on-a-Chip.
    Gulati A; Jorgenson A; Junaid A; Ingber DE
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38436411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip.
    Mahajan G; Doherty E; To T; Sutherland A; Grant J; Junaid A; Gulati A; LoGrande N; Izadifar Z; Timilsina SS; Horváth V; Plebani R; France M; Hood-Pishchany I; Rakoff-Nahoum S; Kwon DS; Goyal G; Prantil-Baun R; Ravel J; Ingber DE
    Microbiome; 2022 Nov; 10(1):201. PubMed ID: 36434666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications.
    Yarbrough VL; Winkle S; Herbst-Kralovetz MM
    Hum Reprod Update; 2015; 21(3):353-77. PubMed ID: 25547201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip.
    Tantengco OAG; Richardson LS; Radnaa E; Kammala AK; Kim S; Medina PMB; Han A; Menon R
    FASEB J; 2022 Oct; 36(10):e22551. PubMed ID: 36106554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling mucus physiology and pathophysiology in human organs-on-chips.
    Izadifar Z; Sontheimer-Phelps A; Lubamba BA; Bai H; Fadel C; Stejskalova A; Ozkan A; Dasgupta Q; Bein A; Junaid A; Gulati A; Mahajan G; Kim S; LoGrande NT; Naziripour A; Ingber DE
    Adv Drug Deliv Rev; 2022 Dec; 191():114542. PubMed ID: 36179916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Human Body on Microfluidic Chips.
    Jalili-Firoozinezhad S; Miranda CC; Cabral JMS
    Trends Biotechnol; 2021 Aug; 39(8):838-852. PubMed ID: 33581889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ-on-a-Chip Systems for Women's Health Applications.
    Nawroth J; Rogal J; Weiss M; Brucker SY; Loskill P
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28985032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases.
    Wang Y; Wang P; Qin J
    Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human organs-on-chips for disease modelling, drug development and personalized medicine.
    Ingber DE
    Nat Rev Genet; 2022 Aug; 23(8):467-491. PubMed ID: 35338360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips.
    Izadifar Z; Cotton J; Chen S; Horvath V; Stejskalova A; Gulati A; LoGrande NT; Budnik B; Shahriar S; Doherty ER; Xie Y; To T; Gilpin SE; Sesay AM; Goyal G; Lebrilla CB; Ingber DE
    Nat Commun; 2024 May; 15(1):4578. PubMed ID: 38811586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily Vaginal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise.
    Song SD; Acharya KD; Zhu JE; Deveney CM; Walther-Antonio MRS; Tetel MJ; Chia N
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32641429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The composition and stability of the vaginal microbiome of healthy women.
    Alhabardi SM; Edris S; Bahieldin A; Al-Hindi RR
    J Pak Med Assoc; 2021 Aug; 71(8):2045-2051. PubMed ID: 34418027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in organ-on-a-chip technology for cardiovascular disease research.
    Liu Y; Lin L; Qiao L
    Anal Bioanal Chem; 2023 Jul; 415(18):3911-3925. PubMed ID: 36867198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microphysiological modeling of the reproductive tract: a fertile endeavor.
    Eddie SL; Kim JJ; Woodruff TK; Burdette JE
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1192-202. PubMed ID: 24737736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that the endometrial microbiota has an effect on implantation success or failure.
    Moreno I; Codoñer FM; Vilella F; Valbuena D; Martinez-Blanch JF; Jimenez-Almazán J; Alonso R; Alamá P; Remohí J; Pellicer A; Ramon D; Simon C
    Am J Obstet Gynecol; 2016 Dec; 215(6):684-703. PubMed ID: 27717732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.