These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38436423)

  • 1. Sound diffraction by knife-edges of finite length: Integral solution, dimensionless parameters, and explicit formulas.
    Nikolaou P; Menounou P
    J Acoust Soc Am; 2024 Mar; 155(3):1719-1734. PubMed ID: 38436423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction by a right-angled impedance wedge: an edge source formulation.
    Hewett DP; Morris A
    J Acoust Soc Am; 2015 Feb; 137(2):633-9. PubMed ID: 25697998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic diffraction by deformed edges of finite length: theory and experiment.
    Stanton TK; Chu D; Norton GV
    J Acoust Soc Am; 2007 Dec; 122(6):3167-76. PubMed ID: 18247729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient evaluation of edge diffraction integrals using the numerical method of steepest descent.
    Asheim A; Svensson UP
    J Acoust Soc Am; 2010 Oct; 128(4):1590-7. PubMed ID: 20968331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical model for predicting edge diffraction in the time domain.
    Menounou P; Nikolaou P
    J Acoust Soc Am; 2017 Dec; 142(6):3580. PubMed ID: 29289114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-order acoustic diffraction by edges of finite thickness.
    Chu D; Stanton TK; Pierce AD
    J Acoust Soc Am; 2007 Dec; 122(6):3177-94. PubMed ID: 18247730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integral equation formulation for the diffraction from convex plates and polyhedra.
    Asheim A; Svensson UP
    J Acoust Soc Am; 2013 Jun; 133(6):3681-91. PubMed ID: 23742323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical and numerical methods for efficient calculation of edge diffraction by an arbitrary incident signal.
    Nikolaou P; Menounou P
    J Acoust Soc Am; 2019 Nov; 146(5):3577. PubMed ID: 31795644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of edge diffraction for more accurate room acoustics auralization.
    Torres RR; Svensson UP; Kleiner M
    J Acoust Soc Am; 2001 Feb; 109(2):600-10. PubMed ID: 11248967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate time domain solution for studying infinite wedge diffraction, its parameters, and characteristics.
    Menounou P; Spiropoulos MI; Nikolaou P
    J Acoust Soc Am; 2023 Feb; 153(2):1399. PubMed ID: 36859139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffraction of a spherical wave by a hard half-plane: Approximation of the edge field in the frequency domain.
    Ouis D
    J Acoust Soc Am; 2019 Jan; 145(1):400. PubMed ID: 30710954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffraction by circular apertures. 1: Method of linear phase and amplitude approximation.
    Gravelsaeter T; Stamnes JJ
    Appl Opt; 1982 Oct; 21(20):3644-51. PubMed ID: 20396290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled experiments of the diffraction of sound by a curved surface.
    Berry A; Daigle GA
    J Acoust Soc Am; 1988 Jun; 83(6):2047-58. PubMed ID: 3411015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel design and sensitivity analysis of displacement measurement system utilizing knife edge diffraction for nanopositioning stages.
    Lee C; Lee SK; Tarbutton JA
    Rev Sci Instrum; 2014 Sep; 85(9):095113. PubMed ID: 25273778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diffraction of sound by an impedance sphere in the vicinity of a ground surface.
    Li KM; Lui WK; Frommer GH
    J Acoust Soc Am; 2004 Jan; 115(1):42-56. PubMed ID: 14758994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edge diffraction of creeping rays.
    Chapman SJ; Ockendon JR; Saward VH
    J Acoust Soc Am; 2000 Apr; 107(4):1841-5. PubMed ID: 10790006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform theory of diffraction (UTD)-based solution for sound diffraction caused by an array of obstacles.
    Rodríguez JV; Pascual-García J; Martínez-Inglés MT; Molina-Garcia-Pardo JM; Juan-Llácer L
    J Acoust Soc Am; 2017 Aug; 142(2):902. PubMed ID: 28863562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified analytical model for sound level prediction at shielded urban locations involving multiple diffraction and reflections.
    Wei W; Van Renterghem T; Botteldooren D
    J Acoust Soc Am; 2015 Nov; 138(5):2744-58. PubMed ID: 26627751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A filter representation of diffraction at infinite and finite wedges.
    Ewert SD
    JASA Express Lett; 2022 Sep; 2(9):092401. PubMed ID: 36182340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the sound field above finite absorbers in the wave-number domain.
    Brandão E; Fernandez-Grande E
    J Acoust Soc Am; 2022 May; 151(5):3019. PubMed ID: 35649901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.