These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38436438)

  • 41. Polymer reversal rate calculated via locally scaled diffusion map.
    Zheng W; Rohrdanz MA; Maggioni M; Clementi C
    J Chem Phys; 2011 Apr; 134(14):144109. PubMed ID: 21495744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Report on the AAPM deep-learning spectral CT Grand Challenge.
    Sidky EY; Pan X
    Med Phys; 2024 Feb; 51(2):772-785. PubMed ID: 36938878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein.
    Matsunaga Y; Komuro Y; Kobayashi C; Jung J; Mori T; Sugita Y
    J Phys Chem Lett; 2016 Apr; 7(8):1446-51. PubMed ID: 27049936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Free Energy Reconstruction from Logarithmic Mean-Force Dynamics Using Multiple Nonequilibrium Trajectories.
    Morishita T; Yonezawa Y; Ito AM
    J Chem Theory Comput; 2017 Jul; 13(7):3106-3119. PubMed ID: 28602083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Error analysis and efficient sampling in Markovian state models for molecular dynamics.
    Singhal N; Pande VS
    J Chem Phys; 2005 Nov; 123(20):204909. PubMed ID: 16351319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations.
    Abrams JB; Tuckerman ME
    J Phys Chem B; 2008 Dec; 112(49):15742-57. PubMed ID: 19367870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes.
    Qiu Y; O'Connor MS; Xue M; Liu B; Huang X
    J Chem Theory Comput; 2023 Jul; 19(14):4728-4742. PubMed ID: 37382437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.
    Nedialkova LV; Amat MA; Kevrekidis IG; Hummer G
    J Chem Phys; 2014 Sep; 141(11):114102. PubMed ID: 25240340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational change of a biomolecule studied by the weighted ensemble method: Use of the diffusion map method to extract reaction coordinates.
    Fujisaki H; Moritsugu K; Mitsutake A; Suetani H
    J Chem Phys; 2018 Oct; 149(13):134112. PubMed ID: 30292230
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effective-mode representation of non-Markovian dynamics: a hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics.
    Hughes KH; Christ CD; Burghardt I
    J Chem Phys; 2009 Sep; 131(12):124108. PubMed ID: 19791853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence.
    Davtyan A; Dama JF; Voth GA; Andersen HC
    J Chem Phys; 2015 Apr; 142(15):154104. PubMed ID: 25903863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Machine learning approach to the Floquet-Lindbladian problem.
    Volokitin V; Meyerov I; Denisov S
    Chaos; 2022 Apr; 32(4):043117. PubMed ID: 35489853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A general method for molecular modeling of nucleation from the melt.
    Santiso EE; Trout BL
    J Chem Phys; 2015 Nov; 143(17):174109. PubMed ID: 26547160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exciton dissociation at donor-acceptor heterojunctions: dynamics using the collective effective mode representation of the spin-boson model.
    Chenel A; Mangaud E; Burghardt I; Meier C; Desouter-Lecomte M
    J Chem Phys; 2014 Jan; 140(4):044104. PubMed ID: 25669502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient and exact sampling of transition path ensembles on Markovian networks.
    Sharpe DJ; Wales DJ
    J Chem Phys; 2020 Jul; 153(2):024121. PubMed ID: 32668926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning.
    Konovalov KA; Unarta IC; Cao S; Goonetilleke EC; Huang X
    JACS Au; 2021 Sep; 1(9):1330-1341. PubMed ID: 34604842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine Learning Non-Markovian Quantum Dynamics.
    Luchnikov IA; Vintskevich SV; Grigoriev DA; Filippov SN
    Phys Rev Lett; 2020 Apr; 124(14):140502. PubMed ID: 32338970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigating Molecular Kinetics by Variationally Optimized Diffusion Maps.
    Boninsegna L; Gobbo G; NoƩ F; Clementi C
    J Chem Theory Comput; 2015 Dec; 11(12):5947-60. PubMed ID: 26580713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exponentially Accelerated Approach to Stationarity in Markovian Open Quantum Systems through the Mpemba Effect.
    Carollo F; Lasanta A; Lesanovsky I
    Phys Rev Lett; 2021 Aug; 127(6):060401. PubMed ID: 34420328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.