These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38436524)
1. Wavelength-dependent threshold fluences for melanosome disruption to evaluate the treatment of pigmented lesions with 532-, 730-, 755-, 785-, and 1064-nm picosecond lasers. Shimojo Y; Nishimura T; Tsuruta D; Ozawa T; Chan HHL; Kono T Lasers Surg Med; 2024 Apr; 56(4):404-418. PubMed ID: 38436524 [TBL] [Abstract][Full Text] [Related]
2. Incident Fluence Analysis for 755-nm Picosecond Laser Treatment of Pigmented Skin Lesions Based on Threshold Fluences for Melanosome Disruption. Shimojo Y; Nishimura T; Hazama H; Ito N; Awazu K Lasers Surg Med; 2021 Oct; 53(8):1096-1104. PubMed ID: 33604920 [TBL] [Abstract][Full Text] [Related]
3. In Silico Evaluation of Nanosecond Laser Treatment of Pigmented Lesions Based on Skin Optical Properties Using a Model of Melanosome Disruption Threshold Fluence. Shimojo Y; Nishimura T; Tsuruta D; Ozawa T; Kono T Lasers Surg Med; 2024 Sep; ():. PubMed ID: 39344140 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear absorption-based analysis of energy deposition in melanosomes for 532-nm short-pulsed laser skin treatment. Shimojo Y; Nishimura T; Ozawa T; Tsuruta D; Awazu K Lasers Surg Med; 2023 Mar; 55(3):305-315. PubMed ID: 36786528 [TBL] [Abstract][Full Text] [Related]
5. Ultralow radiant exposure of a short-pulsed laser to disrupt melanosomes with localized thermal damage through a turbid medium. Shimojo Y; Nishimura T; Tsuruta D; Ozawa T Sci Rep; 2024 Aug; 14(1):20112. PubMed ID: 39209990 [TBL] [Abstract][Full Text] [Related]
6. Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser. Negishi K; Akita H; Matsunaga Y Lasers Surg Med; 2018 Oct; 50(8):851-858. PubMed ID: 29608215 [TBL] [Abstract][Full Text] [Related]
7. Trends in melanosome microcavitation thresholds for nanosecond pulse exposures in the near infrared. Schmidt MS; Kennedy PK; Vincelette RL; Denton ML; Noojin GD; Schuster KJ; Thomas RJ; Rockwell BA J Biomed Opt; 2014 Mar; 19(3):35003. PubMed ID: 24615641 [TBL] [Abstract][Full Text] [Related]
8. Pattern analysis of 532- and 1,064-nm picosecond-domain laser-induced immediate tissue reactions in ex vivo pigmented micropig skin. Lee HC; Childs J; Chung HJ; Park J; Hong J; Cho SB Sci Rep; 2019 Mar; 9(1):4186. PubMed ID: 30862808 [TBL] [Abstract][Full Text] [Related]
9. Treatment of facial and non-facial lentigines with a 730 nm picosecond titanium: Sapphire laser is safe and effective. Kauvar ANB; Sun R; Bhawan J; Singh G; Ugonabo N; Feng H; Schomacker K Lasers Surg Med; 2022 Jan; 54(1):89-97. PubMed ID: 34402537 [TBL] [Abstract][Full Text] [Related]
10. Successful Treatment of Cosmetic Eyebrow Tattoos in Fitzpatrick III-IV With Picosecond (1,064, 532-nm) Neodymium-Doped Yttrium Aluminum Garnet Laser With a Perfluorodecalin-Infused Patch: A Pilot Study. Moustafa F; Suggs A; Hamill SS; Friedman PM Lasers Surg Med; 2020 Sep; 52(7):586-589. PubMed ID: 31828826 [TBL] [Abstract][Full Text] [Related]
11. Combining large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers for promoting protective melanosome autophagy via the PI3K/Akt/mTOR signalling pathway for the treatment of melasma. Shen J; Jin J; Huang J; Guo Y; Qian Q Exp Dermatol; 2024 May; 33(5):e15094. PubMed ID: 38742793 [TBL] [Abstract][Full Text] [Related]
12. Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd:YAG nanosecond lasers: A retrospective photographic review. Levin MK; Ng E; Bae YS; Brauer JA; Geronemus RG Lasers Surg Med; 2016 Feb; 48(2):181-7. PubMed ID: 26922302 [TBL] [Abstract][Full Text] [Related]
13. Trends in nanosecond melanosome microcavitation up to 1540 nm. Schmidt MS; Kennedy PK; Noojin GD; Vincelette RL; Thomas RJ; Rockwell BA J Biomed Opt; 2015; 20(9):095011. PubMed ID: 26385541 [TBL] [Abstract][Full Text] [Related]
14. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers. Johnson MR; Codd PJ; Hill WM; Boettcher T Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136 [TBL] [Abstract][Full Text] [Related]
15. Successful Treatment of Pigmentary Disorders in Asians With a Novel 730-nm Picosecond Laser. Lee SJ; Han HS; Hong JK; Park KY; Seo SJ Lasers Surg Med; 2020 Dec; 52(10):923-927. PubMed ID: 32410249 [TBL] [Abstract][Full Text] [Related]
16. Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Brinkmann R; Hüttmann G; Rögener J; Roider J; Birngruber R; Lin CP Lasers Surg Med; 2000; 27(5):451-64. PubMed ID: 11126439 [TBL] [Abstract][Full Text] [Related]
17. A Prospective Study in the Treatment of Lentigines in Asian Skin Using 532 nm Picosecond Nd:YAG Laser. Chan MWM; Shek SY; Yeung CK; Chan HH Lasers Surg Med; 2019 Nov; 51(9):767-773. PubMed ID: 31115070 [TBL] [Abstract][Full Text] [Related]
18. Prospective comparison study of a 550 picosecond 755 nm laser vs a 50 ns 755 nm laser in the treatment of nevus of Ota. Imagawa K; Kono T; Hanai U; Groff WF; Komaba C; Tsunoda Y; Nemoto H; Akamatsu T Lasers Med Sci; 2023 Jan; 38(1):55. PubMed ID: 36697738 [TBL] [Abstract][Full Text] [Related]
19. A Prospective, Split-Face, Randomized Study Comparing a 755-nm Picosecond Laser With and Without Diffractive Lens Array in the Treatment of Melasma in Asians. Manuskiatti W; Yan C; Tantrapornpong P; Cembrano KAG; Techapichetvanich T; Wanitphakdeedecha R Lasers Surg Med; 2021 Jan; 53(1):95-103. PubMed ID: 32865858 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the safety and efficacy of the dual wavelength picosecond laser for the treatment of benign pigmented lesions in Asians. Kung KY; Shek SY; Yeung CK; Chan HH Lasers Surg Med; 2019 Jan; 51(1):14-22. PubMed ID: 30357871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]