These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38437011)
1. Thermodynamic and Kinetic Activity Descriptors for the Catalytic Hydrogenation of Ketones. Chirila A; Hu Y; Linehan JC; Dixon DA; Wiedner ES J Am Chem Soc; 2024 Mar; 146(10):6866-6879. PubMed ID: 38437011 [TBL] [Abstract][Full Text] [Related]
2. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel. Connelly Robinson SJ; Zall CM; Miller DL; Linehan JC; Appel AM Dalton Trans; 2016 Jun; 45(24):10017-23. PubMed ID: 27071366 [TBL] [Abstract][Full Text] [Related]
3. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. Jeletic MS; Mock MT; Appel AM; Linehan JC J Am Chem Soc; 2013 Aug; 135(31):11533-6. PubMed ID: 23869651 [TBL] [Abstract][Full Text] [Related]
4. Temperature and Solvent Effects on H Hu J; Bruch QJ; Miller AJM J Am Chem Soc; 2021 Jan; 143(2):945-954. PubMed ID: 33383987 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of Pendant Bases into Rh(diphosphine)2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO2 Hydrogenation Activity of [Rh(P2N2)2](+) Complexes. Lilio AM; Reineke MH; Moore CE; Rheingold AL; Takase MK; Kubiak CP J Am Chem Soc; 2015 Jul; 137(25):8251-60. PubMed ID: 26042557 [TBL] [Abstract][Full Text] [Related]
6. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study. Chen HY; Di Tommaso D; Hogarth G; Catlow CR Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602 [TBL] [Abstract][Full Text] [Related]
7. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study. Mondal B; Neese F; Ye S Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267 [TBL] [Abstract][Full Text] [Related]
8. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation. Fong H; Peters JC Inorg Chem; 2015 Jun; 54(11):5124-35. PubMed ID: 25549663 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic and kinetic hydricity of ruthenium(II) hydride complexes. Matsubara Y; Fujita E; Doherty MD; Muckerman JT; Creutz C J Am Chem Soc; 2012 Sep; 134(38):15743-57. PubMed ID: 22966971 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric transfer hydrogenation of ketones catalyzed by amino acid derived rhodium complexes: on the origin of enantioselectivity and enantioswitchability. Ahlford K; Ekström J; Zaitsev AB; Ryberg P; Eriksson L; Adolfsson H Chemistry; 2009 Oct; 15(42):11197-209. PubMed ID: 19750526 [TBL] [Abstract][Full Text] [Related]
11. Catalytic metal-free ketone hydrogenation: a computational experiment. Li H; Zhao L; Lu G; Huang F; Wang ZX Dalton Trans; 2010 Jun; 39(23):5519-26. PubMed ID: 20458421 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. Berkessel A; Schubert TJ; Müller TN J Am Chem Soc; 2002 Jul; 124(29):8693-8. PubMed ID: 12121113 [TBL] [Abstract][Full Text] [Related]
13. Changing the Mechanism for CO Burgess SA; Appel AM; Linehan JC; Wiedner ES Angew Chem Int Ed Engl; 2017 Nov; 56(47):15002-15005. PubMed ID: 28961358 [TBL] [Abstract][Full Text] [Related]
14. Origins of enantioselectivity in asymmetric ketone hydrogenation catalyzed by a RuH2(binap)(cydn) complex: insights from a computational study. Feng R; Xiao A; Zhang X; Tang Y; Lei M Dalton Trans; 2013 Feb; 42(6):2130-45. PubMed ID: 23187862 [TBL] [Abstract][Full Text] [Related]
15. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies. Baratta W; Baldino S; Calhorda MJ; Costa PJ; Esposito G; Herdtweck E; Magnolia S; Mealli C; Messaoudi A; Mason SA; Veiros LF Chemistry; 2014 Oct; 20(42):13603-17. PubMed ID: 25195979 [TBL] [Abstract][Full Text] [Related]
16. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Li YY; Yu SL; Shen WY; Gao JX Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic and kinetic hydricity of transition metal hydrides. Brereton KR; Smith NE; Hazari N; Miller AJM Chem Soc Rev; 2020 Nov; 49(22):7929-7948. PubMed ID: 32780072 [TBL] [Abstract][Full Text] [Related]
18. Correlating Thermodynamic and Kinetic Hydricities of Rhenium Hydrides. Espinosa MR; Ertem MZ; Barakat M; Bruch QJ; Deziel AP; Elsby MR; Hasanayn F; Hazari N; Miller AJM; Pecoraro MV; Smith AM; Smith NE J Am Chem Soc; 2022 Oct; 144(39):17939-17954. PubMed ID: 36130605 [TBL] [Abstract][Full Text] [Related]
19. A theoretical study of X ligand effect on catalytic activity of complexes RuHX(diamine)(PPh(3))(2) (X = NCMe, CO, Cl, OMe, OPh, CCMe and H) in H(2)-hydrogenation of ketones. Chen Z; Chen Y; Tang Y; Lei M Dalton Trans; 2010 Feb; 39(8):2036-43. PubMed ID: 20148222 [TBL] [Abstract][Full Text] [Related]