These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38437083)

  • 1. Spatial Contraction Based on Velocity Variation for Natural Walking in Virtual Reality.
    Xu SZ; Huang K; Fan CW; Zhang SH
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2444-2453. PubMed ID: 38437083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FREE-RDW: A Multi-user Redirected Walking Method for Supporting Non-forward Steps.
    Dong T; Gao T; Dong Y; Wang L; Hu K; Fan J
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redirected Walking for Exploring Immersive Virtual Spaces With HMD: A Comprehensive Review and Recent Advances.
    Fan L; Li H; Shi M
    IEEE Trans Vis Comput Graph; 2023 Oct; 29(10):4104-4123. PubMed ID: 35639681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. F-RDW: Redirected Walking With Forecasting Future Position.
    Jeon SB; Jung J; Park J; Lee IK
    IEEE Trans Vis Comput Graph; 2024 Mar; PP():. PubMed ID: 38470603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making Resets away from Targets: POI aware Redirected Walking.
    Xu SZ; Liu TQ; Liu JH; Zollmann S; Zhang SH
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3778-3787. PubMed ID: 36074875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotion Techniques for Dynamic Environments: Effects on Spatial Knowledge and User Experiences.
    Kim H; Jeon SB; Lee IK
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2184-2194. PubMed ID: 38437127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of navigation method and visual display on distance perception in a large-scale virtual building.
    Li H; Mavros P; Krukar J; Hölscher C
    Cogn Process; 2021 May; 22(2):239-259. PubMed ID: 33564939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirected Walking on Omnidirectional Treadmill.
    Wang Z; Wang Y; Yan S; Zhu Z; Zhang K; Wei H
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3884-3901. PubMed ID: 37027618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. APF-S2T: Steering to Target Redirection Walking Based on Artificial Potential Fields.
    Chen JJ; Hung HC; Sun YR; Chuang JH
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2464-2473. PubMed ID: 38437126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Immersive Cleveland Clinic Virtual Reality Shopping Platform for the Assessment of Instrumental Activities of Daily Living.
    Alberts JL; McGrath M; Miller Koop M; Waltz C; Scelina L; Scelina K; Rosenfeldt AB
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35969104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking.
    Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M
    IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Visual Guides to Reduce Virtual Reality Sickness in First-Person Shooter Games: Correlation Analysis.
    Seok KH; Kim Y; Son W; Kim YS
    JMIR Serious Games; 2021 Jul; 9(3):e18020. PubMed ID: 34264196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller.
    Hashemian AM; Adhikari A; Aguilar IA; Kruijff E; Heyde MV; Riecke BE
    IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):4665-4682. PubMed ID: 37200130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive Resource Demands of Redirected Walking.
    Bruder G; Lubas P; Steinicke F
    IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):539-44. PubMed ID: 26357104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.
    Zhang J; Langbehn E; Krupke D; Katzakis N; Steinicke F
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1671-1680. PubMed ID: 29543182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ManiLoco: A VR-Based Locomotion Method for Concurrent Object Manipulation.
    Wan D; Guo X; Dong J; Mousas C; Chen Y
    Proc ACM Comput Graph Interact Tech; 2023 May; 6(1):. PubMed ID: 37293199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facial Motion Capture System Based on Facial Electromyogram and Electrooculogram for Immersive Social Virtual Reality Applications.
    Kim C; Cha HS; Kim J; Kwak H; Lee W; Im CH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics.
    Horsak B; Simonlehner M; Schöffer L; Dumphart B; Jalaeefar A; Husinsky M
    Front Bioeng Biotechnol; 2021; 9():780314. PubMed ID: 34957075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.