These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38437117)

  • 21. Advanced Scalability for Light Field Image Coding.
    Amirpour H; Guillemot C; Ghanbari M; Timmerer C
    IEEE Trans Image Process; 2022; 31():7435-7448. PubMed ID: 36446011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LiveObj: Object Semantics-based Viewport Prediction for Live Mobile Virtual Reality Streaming.
    Feng X; Bao Z; Wei S
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2736-2745. PubMed ID: 33793401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning.
    Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S
    Front Robot AI; 2019; 6():50. PubMed ID: 33501066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MegaParallax: Casual 360° Panoramas with Motion Parallax.
    Bertel T; Campbell NDF; Richardt C
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1828-1835. PubMed ID: 30802864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast virtual view synthesis for an 8K 3D light-field display based on cutoff-NeRF and 3D voxel rendering.
    Chen S; Yan B; Sang X; Chen D; Wang P; Yang Z; Guo X; Zhong C
    Opt Express; 2022 Nov; 30(24):44201-44217. PubMed ID: 36523100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallax360: Stereoscopic 360° Scene Representation for Head-Motion Parallax.
    Luo B; Xu F; Richardt C; Yong JH
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1545-1553. PubMed ID: 29543172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bridging Global Context Interactions for High-Fidelity Pluralistic Image Completion.
    Zheng C; Song G; Cham TJ; Cai J; Luo L; Phung D
    IEEE Trans Pattern Anal Mach Intell; 2024 Dec; 46(12):8320-8333. PubMed ID: 38771691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perceptual Quality Assessment of Omnidirectional Images as Moving Camera Videos.
    Sui X; Ma K; Yao Y; Fang Y
    IEEE Trans Vis Comput Graph; 2022 Aug; 28(8):3022-3034. PubMed ID: 33434131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Harmonize: a shared environment for extended immersive entertainment.
    Oriti D; Manuri F; Pace F; Sanna A
    Virtual Real; 2021 Oct; ():1-14. PubMed ID: 34642567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immersive scene representation in human visual cortex with ultra-wide angle neuroimaging.
    Park J; Soucy E; Segawa J; Mair R; Konkle T
    bioRxiv; 2024 Feb; ():. PubMed ID: 37292806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a Hybrid Method to Generate Gravito-Inertial Cues for Motion Platforms in Highly Immersive Environments.
    Riera JV; Casas S; Fernández M; Alonso F; Useche SA
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ReGO: Reference-Guided Outpainting for Scenery Image.
    Wang Y; Wei Y; Qian X; Zhu L; Yang Y
    IEEE Trans Image Process; 2024; 33():1375-1388. PubMed ID: 38300777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Study of Immersive Physiology Courses Based on Intelligent Network through Virtual Reality Technology in the Context of 5G.
    Ma L; Zhang W; Lv M; Li J
    Comput Intell Neurosci; 2022; 2022():6234883. PubMed ID: 35607477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Context-Consistent Generation of Indoor Virtual Environments Based on Geometry Constraints.
    He Y; Liu YT; Jin YH; Zhang SH; Lai YK; Hu SM
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):3986-3999. PubMed ID: 34506285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments.
    Mueller C; Luehrs M; Baecke S; Adolf D; Luetzkendorf R; Luchtmann M; Bernarding J
    J Neurosci Methods; 2012 Aug; 209(2):290-8. PubMed ID: 22759716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual reality as a tool for balance research: Eyes open body sway is reproduced in photo-realistic, but not in abstract virtual scenes.
    Assländer L; Streuber S
    PLoS One; 2020; 15(10):e0241479. PubMed ID: 33119679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ConfocalVR: Immersive Visualization for Confocal Microscopy.
    Stefani C; Lacy-Hulbert A; Skillman T
    J Mol Biol; 2018 Oct; 430(21):4028-4035. PubMed ID: 29949752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering.
    Benoit M; Guerchouche R; Petit PD; Chapoulie E; Manera V; Chaurasia G; Drettakis G; Robert P
    Neuropsychiatr Dis Treat; 2015; 11():557-63. PubMed ID: 25834437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of characteristics of image quality in an immersive environment.
    Duh HB; Lin JJ; Kenyon RV; Parker DE; Furness TA
    Presence (Camb); 2002 Jun; 11(3):324-32. PubMed ID: 12238514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Virtual Rehabilitation in Upper Limbs With Biocybernetic Adaptation: The Effects of Virtual Reality on Perceived Muscle Fatigue, Game Performance and User Experience.
    Montoya MF; Munoz JE; Henao OA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):740-747. PubMed ID: 31985431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.