These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38437127)
1. Locomotion Techniques for Dynamic Environments: Effects on Spatial Knowledge and User Experiences. Kim H; Jeon SB; Lee IK IEEE Trans Vis Comput Graph; 2024 May; 30(5):2184-2194. PubMed ID: 38437127 [TBL] [Abstract][Full Text] [Related]
2. Spatial Contraction Based on Velocity Variation for Natural Walking in Virtual Reality. Xu SZ; Huang K; Fan CW; Zhang SH IEEE Trans Vis Comput Graph; 2024 May; 30(5):2444-2453. PubMed ID: 38437083 [TBL] [Abstract][Full Text] [Related]
3. Efficient VR and AR Navigation Through Multiperspective Occlusion Management. Wu ML; Popescu V IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3069-3080. PubMed ID: 29990065 [TBL] [Abstract][Full Text] [Related]
4. Leaning-Based Interfaces Improve Simultaneous Locomotion and Object Interaction in VR Compared to the Handheld Controller. Hashemian AM; Adhikari A; Aguilar IA; Kruijff E; Heyde MV; Riecke BE IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):4665-4682. PubMed ID: 37200130 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a conceptual framework for predicting navigation performance in virtual reality. Grübel J; Thrash T; Hölscher C; Schinazi VR PLoS One; 2017; 12(9):e0184682. PubMed ID: 28915266 [TBL] [Abstract][Full Text] [Related]
6. F-RDW: Redirected Walking With Forecasting Future Position. Jeon SB; Jung J; Park J; Lee IK IEEE Trans Vis Comput Graph; 2024 Mar; PP():. PubMed ID: 38470603 [TBL] [Abstract][Full Text] [Related]
7. MARR : A Multi-Agent Reinforcement Resetter for Redirected Walking. Lee HJ; Jeon SB; Cho YH; Lee IK IEEE Trans Vis Comput Graph; 2024 Feb; PP():. PubMed ID: 38381627 [TBL] [Abstract][Full Text] [Related]
8. Redirected Walking on Omnidirectional Treadmill. Wang Z; Wang Y; Yan S; Zhu Z; Zhang K; Wei H IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3884-3901. PubMed ID: 37027618 [TBL] [Abstract][Full Text] [Related]
9. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation. Ammann-Reiffer C; Kläy A; Keller U JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316 [TBL] [Abstract][Full Text] [Related]
10. FREE-RDW: A Multi-user Redirected Walking Method for Supporting Non-forward Steps. Dong T; Gao T; Dong Y; Wang L; Hu K; Fan J IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027710 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of reorientation techniques and distractors for walking in large virtual environments. Peck TC; Fuchs H; Whitton MC IEEE Trans Vis Comput Graph; 2009; 15(3):383-94. PubMed ID: 19282546 [TBL] [Abstract][Full Text] [Related]
12. Redirected Walking for Exploring Immersive Virtual Spaces With HMD: A Comprehensive Review and Recent Advances. Fan L; Li H; Shi M IEEE Trans Vis Comput Graph; 2023 Oct; 29(10):4104-4123. PubMed ID: 35639681 [TBL] [Abstract][Full Text] [Related]
13. Making Resets away from Targets: POI aware Redirected Walking. Xu SZ; Liu TQ; Liu JH; Zollmann S; Zhang SH IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3778-3787. PubMed ID: 36074875 [TBL] [Abstract][Full Text] [Related]
14. Multi-User Redirected Walking in Separate Physical Spaces for Online VR Scenarios. Xu SZ; Liu JH; Wang M; Zhang FL; Zhang SH IEEE Trans Vis Comput Graph; 2024 Apr; 30(4):1916-1926. PubMed ID: 37028008 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach. Kim YM; Rhiu I Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411 [TBL] [Abstract][Full Text] [Related]
16. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking. Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158 [TBL] [Abstract][Full Text] [Related]
17. SceneFusion: Room-Scale Environmental Fusion for Efficient Traveling Between Separate Virtual Environments. Wang M; Li YJ; Shi J; Steinicke F IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):4615-4630. PubMed ID: 37126613 [TBL] [Abstract][Full Text] [Related]
18. Walking with Virtual People: Evaluation of Locomotion Interfaces in Dynamic Environments. Olivier AH; Bruneau J; Kulpa R; Pettre J IEEE Trans Vis Comput Graph; 2018 Jul; 24(7):2251-2263. PubMed ID: 28613177 [TBL] [Abstract][Full Text] [Related]
19. An Evaluation of Navigational Ability Comparing Redirected Free Exploration with Distractors to Walking-in-Place and Joystick Locomotion Interfaces. Peck TC; Fuchs H; Whitton MC Proc IEEE Virtual Real Conf; 2011 Mar; ():55-62. PubMed ID: 22297572 [TBL] [Abstract][Full Text] [Related]
20. User capabilities in eyes-free spatial target acquisition in immersive virtual reality environments. Wu H; Deng Y; Pan J; Han T; Hu Y; Huang K; Zhang XL Appl Ergon; 2021 Jul; 94():103400. PubMed ID: 33735812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]