These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38437145)

  • 1. DRGCL: Drug Repositioning via Semantic-enriched Graph Contrastive Learning.
    Jia X; Sun X; Wang K; Li M
    IEEE J Biomed Health Inform; 2024 Mar; PP():. PubMed ID: 38437145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring ncRNA-Drug Sensitivity Associations Via Graph Contrastive Learning.
    Hu X; Jiang Y; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Apr; PP():. PubMed ID: 38578855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semantic-enhanced Graph Contrastive Learning with Adaptive Denoising for Drug Repositioning.
    Yu H; Lu M; Li Z; Zhang Y
    IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38109249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction.
    Qiu X; Wang H; Tan X; Fang Z
    Comput Biol Med; 2024 May; 173():108376. PubMed ID: 38552281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning.
    Wei J; Zhuo L; Zhou Z; Lian X; Fu X; Yao X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37427977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning.
    Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes.
    Xuan P; Gu J; Cui H; Wang S; Toshiya N; Liu C; Zhang T
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38269610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrastive learning of graphs under label noise.
    Li X; Li Q; Li D; Qian H; Wang J
    Neural Netw; 2024 Apr; 172():106113. PubMed ID: 38232430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Label Classification With Dual Tail-Node Augmentation for Drug Repositioning.
    Zhu X; Lu W
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3068-3079. PubMed ID: 37418410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.
    Xiong Z; Huang F; Wang Z; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on weighted local information augmented graph neural network.
    Meng Y; Wang Y; Xu J; Lu C; Tang X; Peng T; Zhang B; Tian G; Yang J
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38019732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.
    Sun X; Wang B; Zhang J; Li M
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity measures-based graph co-contrastive learning for drug-disease association prediction.
    Gao Z; Ma H; Zhang X; Wang Y; Wu Z
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational framework for predicting novel drug indications using graph convolutional network with contrastive learning.
    Luo Y; Shan W; Peng L; Luo L; Ding P; Liang W
    IEEE J Biomed Health Inform; 2024 Apr; PP():. PubMed ID: 38607707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks.
    Zhao BW; Su XR; Yang Y; Li DX; Li GD; Hu PW; Zhao YG; Hu L
    Methods; 2023 Dec; 220():106-114. PubMed ID: 37972913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local structure-aware graph contrastive representation learning.
    Yang K; Liu Y; Zhao Z; Ding P; Zhao W
    Neural Netw; 2024 Apr; 172():106083. PubMed ID: 38182463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Knowledge Graph Embedding With Heterogeneous Relation Attention Networks.
    Li Z; Liu H; Zhang Z; Liu T; Xiong NN
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3961-3973. PubMed ID: 33606639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction.
    Wang Y; Song J; Dai Q; Duan X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3146-3157. PubMed ID: 38294927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.