These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38437220)

  • 1. Liquid Metal Nanoparticles Physically Hybridized with Cellulose Nanocrystals Initiate and Toughen Hydrogels with Piezoionic Properties.
    Rahmani P; Shojaei A; Sakorikar T; Wang M; Mendoza-Apodaca Y; Dickey MD
    ACS Nano; 2024 Mar; 18(11):8038-8050. PubMed ID: 38437220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties.
    Hao S; Shao C; Meng L; Cui C; Xu F; Yang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copolymer-grafted cellulose nanocrystal induced nanocomposite hydrogels with enhanced strength, high elasticity and adhesiveness for flexible strain and pressure sensors.
    Li B; Chen Y; Wu W; Cao X; Luo Z
    Carbohydr Polym; 2023 Oct; 317():121092. PubMed ID: 37364960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors.
    Cui C; Shao C; Meng L; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Salt-Induced Ultra-Stretchable Nanocellulose Composite Hydrogel for Self-Powered Sensors.
    Wang X; Li X; Wang B; Chen J; Zhang L; Zhang K; He M; Xue Y; Yang G
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage.
    Li X; Jiang M; Du Y; Ding X; Xiao C; Wang Y; Yang Y; Zhuo Y; Zheng K; Liu X; Chen L; Gong Y; Tian X; Zhang X
    Mater Horiz; 2023 Jul; 10(8):2945-2957. PubMed ID: 37165676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection.
    Khan M; Shah LA; Rahman TU; Yoo HM; Ye D; Vacharasin J
    J Mech Behav Biomed Mater; 2023 Feb; 138():105610. PubMed ID: 36509014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors.
    Ma W; Cao W; Lu T; Jiang Z; Xiong R; Samal SK; Huang C
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58048-58058. PubMed ID: 34842414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Stress Bimodal Sensing Conductive Hydrogel-Liquid Metal by Facile Synthesis for Smart Wearable Sensor.
    Wang C; Li J; Fang Z; Hu Z; Wei X; Cao Y; Han J; Li Y
    Macromol Rapid Commun; 2022 Jan; 43(1):e2100543. PubMed ID: 34699666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels.
    Li R; Ren J; Zhang M; Li M; Li Y; Yang W
    Biomacromolecules; 2024 Feb; 25(2):614-625. PubMed ID: 38241010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using chitosan nanofibers to synergistically construct a highly stretchable multi-functional liquid mental-based hydrogel for assembling strain sensor with high sensitivity and broad working range.
    Wang B; Wang X; Liu W; Song Z; Wang H; Li G; Yu D; Liu X; Ge S
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129225. PubMed ID: 38184053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.
    Liu YJ; Cao WT; Ma MG; Wan P
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25559-25570. PubMed ID: 28696658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stretchable and Stimulus-Free Self-Healing Hydrogels with Multiple Signal Detection Performance for Self-Powered Wearable Temperature Sensors.
    Chai X; Tang J; Li Y; Cao Y; Chen X; Chen T; Zhang Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18262-18271. PubMed ID: 37002947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superabsorbent carboxymethyl cellulose-based hydrogel fabricated by liquid-metal-induced double crosslinking polymerisation.
    Cao Q; Chen J; Wang M; Wang Z; Wang W; Shen Y; Xue Y; Li B; Ma Y; Yao Y; Wu H
    Carbohydr Polym; 2024 May; 331():121910. PubMed ID: 38388046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor.
    Chen C; Wang J; Xu Z; Chen N; Wang F
    Int J Biol Macromol; 2023 Aug; 247():125595. PubMed ID: 37394214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability.
    Zhang T; Zuo T; Hu D; Chang C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24230-24237. PubMed ID: 28650140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a High-Strength, Tough, Swelling-Resistant, Conductive Hydrogel via Ion Cross-Linking, Directional Freeze-Drying, and Rehydration.
    Luo J; Wang H; Wang J; Chen Y; Li C; Zhong K; Xiang J; Jia P
    ACS Biomater Sci Eng; 2023 May; 9(5):2694-2705. PubMed ID: 37000674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions.
    Wang Z; Wang S; Zhang L; Liu H; Xu X
    Research (Wash D C); 2024; 7():0298. PubMed ID: 38222114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid).
    Li B; Zhang Y; Wu C; Guo B; Luo Z
    Carbohydr Polym; 2018 Oct; 198():1-8. PubMed ID: 30092978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin.
    Xin Y; Liang J; Ren L; Gao W; Qiu W; Li Z; Qu B; Peng A; Ye Z; Fu J; Zeng G; He X
    Biomacromolecules; 2023 Mar; 24(3):1287-1298. PubMed ID: 36745900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.