These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38437260)

  • 21. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general model for resolution of digital holographic microscopy.
    Wu X; Gao W
    J Microsc; 2015 Nov; 260(2):152-62. PubMed ID: 26249789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope.
    Liu T; Rajadhyaksha M; Dickensheets DL
    Light Sci Appl; 2019; 8():59. PubMed ID: 31263558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards Portable MEMS Oscillators for Sensing Nanoparticles.
    Chellasivalingam M; Zielinski AT; Whitney TS; Boies AM; Seshia AA
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast autofocusing using tiny transformer networks for digital holographic microscopy.
    Cuenat S; Andréoli L; André AN; Sandoz P; Laurent GJ; Couturier R; Jacquot M
    Opt Express; 2022 Jul; 30(14):24730-24746. PubMed ID: 36237020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precise measurement of three-dimensional positions of transparent ellipsoidal particles using digital holographic microscopy.
    Byeon HJ; Seo KW; Lee SJ
    Appl Opt; 2015 Mar; 54(8):2106-12. PubMed ID: 25968390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range.
    Yourassowsky C; Dubois F
    Opt Express; 2014 Mar; 22(6):6661-73. PubMed ID: 24664015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustofluidic localization of sparse particles on a piezoelectric resonant sensor for nanogram-scale mass measurements.
    Qian J; Begum H; Lee JE
    Microsyst Nanoeng; 2021; 7():61. PubMed ID: 34567773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detectability of unresolved particles in off-axis digital holographic microscopy.
    Johnston N; Dubay MM; Serabyn E; Nadeau JL
    Appl Opt; 2024 Mar; 63(7):B114-B125. PubMed ID: 38437262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coal powder measurement by digital holography with expanded measurement area.
    Wu Y; Wu X; Wang Z; Chen L; Cen K
    Appl Opt; 2011 Dec; 50(34):H22-9. PubMed ID: 22193011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A forward reconstruction, holographic method to overcome the lens effect during 3D detection of semi-transparent, non-spherical particles.
    Tai CW; Ahmadzadegan A; Ardekani A; Narsimhan V
    Soft Matter; 2022 Dec; 19(1):115-127. PubMed ID: 36472306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MEMS enabled miniaturized light-sheet microscopy with all optical control.
    Bakas S; Uttamchandani D; Toshiyoshi H; Bauer R
    Sci Rep; 2021 Jul; 11(1):14100. PubMed ID: 34238945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate.
    Chauhan VM; Hopper RH; Ali SZ; King EM; Udrea F; Oxley CH; Aylott JW
    Sens Actuators B Chem; 2014 Mar; 192():126-133. PubMed ID: 25844025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A MEMS lens scanner based on serpentine electrothermal bimorph actuators for large axial tuning.
    Zhou L; Yu X; Feng PX; Li J; Xie H
    Opt Express; 2020 Aug; 28(16):23439-23453. PubMed ID: 32752341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography.
    Yingchun W; Xuecheng W; Jing Y; Zhihua W; Xiang G; Binwu Z; Linghong C; Kunzan Q; Gréhan G; Kefa C
    Appl Opt; 2014 Feb; 53(4):556-64. PubMed ID: 24514172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving axial resolution for holographic tracking of colloids and bacteria over a wide depth of field by optimizing different factors.
    Huang G; Tian W; Qi M; Gong X; Zhang G
    Opt Express; 2018 Apr; 26(8):9920-9930. PubMed ID: 29715938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic threshold technique for holographic particle field characterization.
    Singh DK; Panigrahi PK
    Appl Opt; 2012 Jun; 51(17):3874-87. PubMed ID: 22695666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope.
    Picazo-Bueno JA; Trindade K; Sanz M; Micó V
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization of fast-moving cells in vivo using digital holographic video microscopy.
    Sun H; Song B; Dong H; Reid B; Player MA; Watson J; Zhao M
    J Biomed Opt; 2008; 13(1):014007. PubMed ID: 18315365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical coherence tomography endoscopic probe based on a tilted MEMS mirror.
    Duan C; Tanguy Q; Pozzi A; Xie H
    Biomed Opt Express; 2016 Sep; 7(9):3345-3354. PubMed ID: 27699103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.