These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38437377)

  • 1. Anti-reflection coating with mullite and Duroid for large-diameter cryogenic sapphire and alumina optics.
    Sakaguri K; Hasegawa M; Sakurai Y; Sugiyama J; Farias N; Hill CA; Johnson BR; Konishi K; Kusaka A; Lee AT; Matsumura T; Wollack EJ; Yumoto J
    Appl Opt; 2024 Feb; 63(6):1618-1627. PubMed ID: 38437377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters.
    Inoue Y; Hamada T; Hasegawa M; Hazumi M; Hori Y; Suzuki A; Tomaru T; Matsumura T; Sakata T; Minamoto T; Hirai T
    Appl Opt; 2016 Dec; 55(34):D22-D28. PubMed ID: 27958435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband plasma spray anti-reflection coating technology for millimeter-wave astrophysics.
    Jeong O; Plambeck R; Raum C; Suzuki A; Lee AT
    Appl Opt; 2023 Feb; 62(6):1628-1634. PubMed ID: 36821328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryogenic infrared filter made of alumina for use at millimeter wavelength.
    Inoue Y; Matsumura T; Hazumi M; Lee AT; Okamura T; Suzuki A; Tomaru T; Yamaguchi H
    Appl Opt; 2014 Mar; 53(9):1727-33. PubMed ID: 24663447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simons Observatory: broadband metamaterial antireflection cuttings for large-aperture alumina optics.
    Golec JE; Sutariya S; Jackson R; Zimmerman J; Dicker SR; Iuliano J; McMahon J; Puglisi G; Tucker C; Wollack EJ
    Appl Opt; 2022 Oct; 61(30):8904-8911. PubMed ID: 36607016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband, millimeter-wave antireflection coatings for large-format, cryogenic aluminum oxide optics.
    Nadolski A; Vieira JD; Sobrin JA; Kofman AM; Ade PAR; Ahmed Z; Anderson AJ; Avva JS; Basu Thakur R; Bender AN; Benson BA; Bryant L; Carlstrom JE; Carter FW; Cecil TW; Chang CL; Cheshire JR; Chesmore GE; Cliche JF; Cukierman A; de Haan T; Dierickx M; Ding J; Dutcher D; Everett W; Farwick J; Ferguson KR; Florez L; Foster A; Fu J; Gallicchio J; Gambrel AE; Gardner RW; Groh JC; Guns S; Guyser R; Halverson NW; Harke-Hosemann AH; Harrington NL; Harris RJ; Henning JW; Holzapfel WL; Howe D; Huang N; Irwin KD; Jeong O; Jonas M; Jones A; Korman M; Kovac J; Kubik DL; Kuhlmann S; Kuo CL; Lee AT; Lowitz AE; McMahon J; Meier J; Meyer SS; Michalik D; Montgomery J; Natoli T; Nguyen H; Noble GI; Novosad V; Padin S; Pan Z; Paschos P; Pearson J; Posada CM; Quan W; Rahlin A; Riebel D; Ruhl JE; Sayre JT; Shirokoff E; Smecher G; Stark AA; Stephen J; Story KT; Suzuki A; Tandoi C; Thompson KL; Tucker C; Vanderlinde K; Wang G; Whitehorn N; Yefremenko V; Yoon KW; Young MR
    Appl Opt; 2020 Apr; 59(10):3285-3295. PubMed ID: 32400613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Simons Observatory: Cryogenic half wave plate rotation mechanism for the small aperture telescopes.
    Yamada K; Bixler B; Sakurai Y; Ashton PC; Sugiyama J; Arnold K; Begin J; Corbett L; Day-Weiss S; Galitzki N; Hill CA; Johnson BR; Jost B; Kusaka A; Koopman BJ; Lashner J; Lee AT; Mangu A; Nishino H; Page LA; Randall MJ; Sasaki D; Song X; Spisak J; Tsan T; Wang Y; Williams PA
    Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38385955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Simons Observatory: metamaterial microwave absorber and its cryogenic applications.
    Xu Z; Chesmore GE; Adachi S; Ali AM; Bazarko A; Coppi G; Devlin M; Devlin T; Dicker SR; Gallardo PA; Golec JE; Gudmundsson JE; Harrington K; Hattori M; Kofman A; Kiuchi K; Kusaka A; Limon M; Matsuda F; McMahon J; Nati F; Niemack MD; Suzuki A; Teply GP; Thornton RJ; Wollack EJ; Zannoni M; Zhu N
    Appl Opt; 2021 Feb; 60(4):864-874. PubMed ID: 33690402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-reflection coated vacuum window for the Primordial Inflation Polarization ExploreR (PIPER) balloon-borne instrument.
    Datta R; Chuss DT; Eimer J; Essinger-Hileman T; Gandilo NN; Helson K; Kogut AJ; Lowe L; Mirel P; Rostem K; Sagliocca M; Sponseller D; Switzer ER; Taraschi PA; Wollack EJ
    Rev Sci Instrum; 2021 Mar; 92(3):035111. PubMed ID: 33820033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated Performance of Laser-Machined Metamaterial Anti-reflection Coatings.
    Farias N; Beckman S; Lee AT; Suzuki A
    J Low Temp Phys; 2022; 209(5-6):1232-1241. PubMed ID: 36467122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reactive ion etched anti-reflection coatings for sub-millimeter silicon optics.
    Gallardo PA; Koopman BJ; Cothard NF; Bruno SM; Cortes-Medellin G; Marchetti G; Miller KH; Mockler B; Niemack MD; Stacey G; Wollack EJ
    Appl Opt; 2017 Apr; 56(10):2796-2803. PubMed ID: 28375244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxy-based broadband antireflection coating for millimeter-wave optics.
    Rosen D; Suzuki A; Keating B; Krantz W; Lee AT; Quealy E; Richards PL; Siritanasak P; Walker W
    Appl Opt; 2013 Nov; 52(33):8102-5. PubMed ID: 24513764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a half-wave plate for cosmic microwave background circular polarization measurement with POLARBEAR.
    Fujino T; Takakura S; Chinone Y; Hasegawa M; Hazumi M; Katayama N; Lee AT; Matsumura T; Minami Y; Nishino H
    Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.
    Pisano G; Savini G; Ade PA; Haynes V; Gear WK
    Appl Opt; 2006 Sep; 45(27):6982-9. PubMed ID: 16946775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cryogenic continuously rotating half-wave plate mechanism for the POLARBEAR-2b cosmic microwave background receiver.
    Hill CA; Kusaka A; Ashton P; Barton P; Adkins T; Arnold K; Bixler B; Ganjam S; Lee AT; Matsuda F; Matsumura T; Sakurai Y; Tat R; Zhou Y
    Rev Sci Instrum; 2020 Dec; 91(12):124503. PubMed ID: 33380005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths.
    Datta R; Munson CD; Niemack MD; McMahon JJ; Britton J; Wollack EJ; Beall J; Devlin MJ; Fowler J; Gallardo P; Hubmayr J; Irwin K; Newburgh L; Nibarger JP; Page L; Quijada MA; Schmitt BL; Staggs ST; Thornton R; Zhang L
    Appl Opt; 2013 Dec; 52(36):8747-58. PubMed ID: 24513939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grass-like Alumina with Low Refractive Index for Scalable, Broadband, Omnidirectional Antireflection Coatings on Glass Using Atomic Layer Deposition.
    Kauppinen C; Isakov K; Sopanen M
    ACS Appl Mater Interfaces; 2017 May; 9(17):15038-15043. PubMed ID: 28398715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique.
    Cui H; Li B; Xiao S; Han Y; Wang J; Gao C; Wang Y
    Opt Express; 2017 Mar; 25(5):5807-5820. PubMed ID: 28380839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite reflective/absorptive IR-blocking filters embedded in metamaterial antireflection-coated silicon.
    Munson CD; Choi SK; Coughlin KP; McMahon JJ; Miller KH; Page LA; Wollack EJ
    Appl Opt; 2017 Jul; 56(19):5349-5354. PubMed ID: 29047488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-angle broadband antireflection coatings with nano-taper hydrated alumina film.
    Wang H; Yang C; Wang Y; Yuan W; Zheng T; Chen X; Liu Y; Zhang Y; Shen W
    Opt Express; 2022 Aug; 30(16):28922-28931. PubMed ID: 36299078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.