These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38437531)

  • 1. A 4,565-My-old record of the solar nebula field.
    Maurel C; Gattacceca J
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2312802121. PubMed ID: 38437531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paleomagnetism. Solar nebula magnetic fields recorded in the Semarkona meteorite.
    Fu RR; Weiss BP; Lima EA; Harrison RJ; Bai XN; Desch SJ; Ebel DS; Suavet C; Wang H; Glenn D; Le Sage D; Kasama T; Walsworth RL; Kuan AT
    Science; 2014 Nov; 346(6213):1089-92. PubMed ID: 25394792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. History of the solar nebula from meteorite paleomagnetism.
    Weiss BP; Bai XN; Fu RR
    Sci Adv; 2021 Jan; 7(1):. PubMed ID: 33523830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paleomagnetic evidence for a disk substructure in the early solar system.
    Borlina CS; Weiss BP; Bryson JFJ; Bai XN; Lima EA; Chatterjee N; Mansbach EN
    Sci Adv; 2021 Oct; 7(42):eabj6928. PubMed ID: 34652938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositions of iron-meteorite parent bodies constrain the structure of the protoplanetary disk.
    Zhang B; Chabot NL; Rubin AE
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2306995121. PubMed ID: 38805273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lifetime of the solar nebula constrained by meteorite paleomagnetism.
    Wang H; Weiss BP; Bai XN; Downey BG; Wang J; Wang J; Suavet C; Fu RR; Zucolotto ME
    Science; 2017 Feb; 355(6325):623-627. PubMed ID: 28183977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent planetesimal formation in an outer part of the early solar system.
    Neumann W; Ma N; Bouvier A; Trieloff M
    Sci Rep; 2024 Jul; 14(1):14017. PubMed ID: 38951135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Igneous meteorites suggest Aluminium-26 heterogeneity in the early Solar Nebula.
    Krestianinov E; Amelin Y; Yin QZ; Cary P; Huyskens MH; Miller A; Dey S; Hibiya Y; Tang H; Young ED; Pack A; Di Rocco T
    Nat Commun; 2023 Aug; 14(1):4940. PubMed ID: 37643999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early aqueous activity on primitive meteorite parent bodies.
    Endress M; Zinner E; Bischoff A
    Nature; 1996 Feb; 379(6567):701-3. PubMed ID: 8602215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.
    Simonelli DP; Pollack JB; McKay CP
    Icarus; 1997 Feb; 125(2):261-80. PubMed ID: 11540163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The comet-like composition of a protoplanetary disk as revealed by complex cyanides.
    Öberg KI; Guzmán VV; Furuya K; Qi C; Aikawa Y; Andrews SM; Loomis R; Wilner DJ
    Nature; 2015 Apr; 520(7546):198-201. PubMed ID: 25855455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The absolute chronology and thermal processing of solids in the solar protoplanetary disk.
    Connelly JN; Bizzarro M; Krot AN; Nordlund Å; Wielandt D; Ivanova MA
    Science; 2012 Nov; 338(6107):651-5. PubMed ID: 23118187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The early evolution of the inner solar system: a meteoritic perspective.
    O'D Alexander CM; Boss AP; Carlson RW
    Science; 2001 Jul; 293(5527):64-8. PubMed ID: 11441173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protracted core formation and rapid accretion of protoplanets.
    Kruijer TS; Touboul M; Fischer-Gödde M; Bermingham KR; Walker RJ; Kleine T
    Science; 2014 Jun; 344(6188):1150-4. PubMed ID: 24904163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks.
    Boss AP
    Astrophys J; 2000 Jun; 536(2):L101-L104. PubMed ID: 10859128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astronomical context of Solar System formation from molybdenum isotopes in meteorite inclusions.
    Brennecka GA; Burkhardt C; Budde G; Kruijer TS; Nimmo F; Kleine T
    Science; 2020 Nov; 370(6518):837-840. PubMed ID: 33184211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale thermal events in the solar nebula: evidence from Fe,Ni metal grains in primitive meteorites.
    Meibom A; Desch SJ; Krot AN; Cuzzi JN; Petaev MI; Wilson L; Keil K
    Science; 2000 May; 288(5467):839-41. PubMed ID: 10797001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NEW INSIGHT INTO THE SOLAR SYSTEM'S TRANSITION DISK PHASE PROVIDED BY THE METAL-RICH CARBONACEOUS CHONDRITE ISHEYEVO.
    Morris MA; Garvie LAJ; Knauth LP
    Astrophys J Lett; 2015 Mar; 801(2):. PubMed ID: 30705746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga).
    Morrison SM; Hazen RM
    Am Mineral; 2020 Oct; 105(10):1508-1535. PubMed ID: 33958805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 4,565-My-old andesite from an extinct chondritic protoplanet.
    Barrat JA; Chaussidon M; Yamaguchi A; Beck P; Villeneuve J; Byrne DJ; Broadley MW; Marty B
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.