These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38437740)
1. Deep resource utilization of hazardous arsenic-alkali slag: Thermodynamic analysis, mechanism investigation and process optimization. Tian J; Sun W; Han H; Wang Y; Peng J; Zhang X J Environ Manage; 2024 Mar; 355():120440. PubMed ID: 38437740 [TBL] [Abstract][Full Text] [Related]
2. Alkali circulating leaching of arsenic from copper smelter dust based on arsenic-alkali efficient separation. Tian J; Zhang X; Wang Y; Han H; Sun W; Yue T; Sun J J Environ Manage; 2021 Jun; 287():112348. PubMed ID: 33735678 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies. Salihoglu G J Air Waste Manag Assoc; 2014 Nov; 64(11):1288-98. PubMed ID: 25509550 [TBL] [Abstract][Full Text] [Related]
4. Fundamental research on selective arsenic removal from high-salinity alkaline wastewater. Wang Y; Tian J; Peng J; Sun W; Zhang X; Han H; Shen J Chemosphere; 2022 Nov; 307(Pt 3):135992. PubMed ID: 35964730 [TBL] [Abstract][Full Text] [Related]
5. Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. Wang X; Ding J; Wang L; Zhang S; Hou H; Zhang J; Chen J; Ma M; Tsang DCW; Wu X Environ Int; 2020 Feb; 135():105406. PubMed ID: 31864033 [TBL] [Abstract][Full Text] [Related]
6. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge. Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856 [TBL] [Abstract][Full Text] [Related]
7. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. Guo X; Wang K; He M; Liu Z; Yang H; Li S J Environ Sci (China); 2014 Jul; 26(7):1549-56. PubMed ID: 25080005 [TBL] [Abstract][Full Text] [Related]
8. Iron-calcium reinforced solidification of arsenic alkali residue in geopolymer composite: Wide pH stabilization and its mechanism. Sun Y; Zhang P; Li Z; Chen J; Ke Y; Hu J; Liu B; Yang J; Liang S; Su X; Hou H Chemosphere; 2023 Jan; 312(Pt 2):137063. PubMed ID: 36395889 [TBL] [Abstract][Full Text] [Related]
9. The Utilization of Alkali-Activated Lead-Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization. Yu L; Fang L; Zhang P; Zhao S; Jiao B; Li D Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639258 [TBL] [Abstract][Full Text] [Related]
10. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Kim SH; Jeong S; Chung H; Nam K Chemosphere; 2018 Oct; 208():916-921. PubMed ID: 30068035 [TBL] [Abstract][Full Text] [Related]
11. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags. Zhang X; Sun Y; Ma Y; Ji W; Ren Y Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145 [TBL] [Abstract][Full Text] [Related]
12. An effective separation process of arsenic, lead, and zinc from high arsenic-containing copper smelting ashes by alkali leaching followed by sulfide precipitation. Zhang Y; Feng X; Jin B Waste Manag Res; 2020 Nov; 38(11):1214-1221. PubMed ID: 32515295 [TBL] [Abstract][Full Text] [Related]
13. Progressive low-temperature volatilization control: Efficient separation of arsenic and antimony from smelter dust. Che J; Zhang W; Chen Y; Feng S; Zuo Y; Wang C Sci Total Environ; 2024 Feb; 912():169366. PubMed ID: 38104839 [TBL] [Abstract][Full Text] [Related]
14. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization. Xing Z; Yang H; Xue X; Jiang P Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688 [TBL] [Abstract][Full Text] [Related]
15. Effect of slag composition on the distribution and separation behavior of arsenic between CaO-based slag and liquid copper. Park J; Kim HJ; Park JH J Hazard Mater; 2022 Aug; 436():129154. PubMed ID: 35739700 [TBL] [Abstract][Full Text] [Related]
16. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Oh C; Rhee S; Oh M; Park J J Hazard Mater; 2012 Apr; 213-214():147-55. PubMed ID: 22349716 [TBL] [Abstract][Full Text] [Related]
17. Alkali-activated slag concrete with paper industry waste. Mavroulidou M; Shah S Waste Manag Res; 2021 Mar; 39(3):466-472. PubMed ID: 33535906 [TBL] [Abstract][Full Text] [Related]
18. Speciation Characterization and Environmental Stability of Arsenic in Arsenic-Containing Copper Slag Tailing. You M; Hu Y; Zhou C; Liu G Molecules; 2024 Mar; 29(7):. PubMed ID: 38611783 [TBL] [Abstract][Full Text] [Related]
19. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. Li YC; Min XB; Chai LY; Shi MQ; Tang CJ; Wang QW; Liang YJ; Lei J; Liyang WJ J Environ Manage; 2016 Oct; 181():756-761. PubMed ID: 27449964 [TBL] [Abstract][Full Text] [Related]
20. Recovery of high-quality phosphate from steelmaking slag by a hydrometallurgical process. Du CM; Gao X; Ueda S; Kitamura SY Sci Total Environ; 2022 May; 819():153125. PubMed ID: 35041953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]