BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38437746)

  • 1. How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum.
    Huang J; Guo F; Burford MA; Kainz M; Li F; Gao W; Ouyang X; Zhang Y
    J Environ Manage; 2024 Mar; 355():120501. PubMed ID: 38437746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing water nutrient reduces the availability of high-quality food resources for aquatic consumers and consequently simplifies river food webs.
    Yan K; Guo F; Kainz MJ; Bunn SE; Li F; Gao W; Ouyang X; Zhang Y
    Sci Total Environ; 2024 Jun; 929():172706. PubMed ID: 38657799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal variation in the nutritional quality of basal food sources and its effect on invertebrates and fish in subalpine rivers.
    Guo F; Ebm N; Bunn SE; Brett MT; Hager H; Kainz MJ
    J Anim Ecol; 2021 Nov; 90(11):2678-2691. PubMed ID: 34358339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple stressors shape invertebrate assemblages and reduce their trophic niche: A case study in a regulated stream.
    Dolédec S; Simon L; Blemus J; Rigal A; Robin J; Mermillod-Blondin F
    Sci Total Environ; 2021 Jun; 773():145061. PubMed ID: 33940713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding strategies for the acquisition of high-quality food sources in stream macroinvertebrates: Collecting, integrating, and mixed feeding.
    Guo F; Bunn SE; Brett MT; Fry B; Hager H; Ouyang X; Kainz MJ
    Limnol Oceanogr; 2018 Sep; 63(5):1964-1978. PubMed ID: 30555183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sources and fate of omega-3 polyunsaturated fatty acids in a highly eutrophic lake.
    Luo Y; Wang Y; Guo F; Kainz MJ; You J; Li F; Gao W; Shen X; Tao J; Zhang Y
    Sci Total Environ; 2024 Jul; 932():172879. PubMed ID: 38697529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater ecosystems with implications of global change.
    Yan K; Guo F; Kainz MJ; Li F; Gao W; Bunn SE; Zhang Y
    Biol Rev Camb Philos Soc; 2024 Feb; 99(1):200-218. PubMed ID: 37724488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the impact of dams on aquatic food webs using stable isotopes: Current progress and future challenges.
    Guo F; Fry B; Yan K; Huang J; Zhao Q; O'Mara K; Li F; Gao W; Kainz MJ; Brett MT; Bunn SE; Zhang Y
    Sci Total Environ; 2023 Dec; 904():167097. PubMed ID: 37716688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eutrophication and loss of riparian shading influence food quality and trophic relation in stream food webs.
    Zhang J; Kainz MJ; Wang X; Tan X; Zhang Q
    Water Res; 2024 Feb; 249():120926. PubMed ID: 38043353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams.
    Guo F; Kainz MJ; Sheldon F; Bunn SE
    Oecologia; 2016 Jun; 181(2):449-62. PubMed ID: 26883960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large herbivorous wildlife and livestock differentially influence the relative importance of different sources of energy for riverine food webs.
    Masese FO; Fuss T; Bistarelli LT; Buchen-Tschiskale C; Singer G
    Sci Total Environ; 2022 Jul; 828():154452. PubMed ID: 35278569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land use alters trophic redundancy and resource flow through stream food webs.
    Price EL; Sertić Perić M; Romero GQ; Kratina P
    J Anim Ecol; 2019 May; 88(5):677-689. PubMed ID: 30712255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes.
    Zhang Y; Feng K; Song D; Wang Q; Ye S; Liu J; Kainz MJ
    Sci Total Environ; 2024 Feb; 913():169562. PubMed ID: 38142998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyunsaturated fatty acids in fish tissues more closely resemble algal than terrestrial diet sources.
    Ebm N; Guo F; Brett MT; Bunn SE; Kainz MJ
    Hydrobiologia; 2021; 848(2):371-383. PubMed ID: 33343020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty-acid based assessment of benthic food-web responses to multiple stressors in a large river system.
    Lau DCP; Brua RB; Goedkoop W; Culp JM
    Environ Pollut; 2023 Nov; 337():122598. PubMed ID: 37741544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of essential fatty acids in fish differs by species, habitat use and nutritional quality of prey.
    Bandara T; Brugel S; Andersson A; Lau DCP
    Ecol Evol; 2023 Jun; 13(6):e10158. PubMed ID: 37274152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroinvertebrate production and food web energetics in an industrially contaminated stream.
    Runck C
    Ecol Appl; 2007 Apr; 17(3):740-53. PubMed ID: 17494393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado.
    Besser JM; Brumbaugh WG; May TW; Church SE; Kimball BA
    Arch Environ Contam Toxicol; 2001 Jan; 40(1):48-59. PubMed ID: 11116340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open riparian canopy and nutrient pollution interactively decrease trophic redundancy and allochthonous resource in streams.
    Zhang J; Tan X; Zhang Q
    Environ Res; 2023 Aug; 231(Pt 3):116296. PubMed ID: 37263470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.