These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38437962)
1. Comparative dynamic optimization study of batch hydrothermal liquefaction of two microalgal strains for economic bio-oil production. De R Bioresour Technol; 2024 Apr; 398():130523. PubMed ID: 38437962 [TBL] [Abstract][Full Text] [Related]
2. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442 [TBL] [Abstract][Full Text] [Related]
3. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Faeth JL; Savage PE Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204 [TBL] [Abstract][Full Text] [Related]
4. Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Dandamudi KPR; Muppaneni T; Sudasinghe N; Schaub T; Holguin FO; Lammers PJ; Deng S Bioresour Technol; 2017 Jul; 236():129-137. PubMed ID: 28399416 [TBL] [Abstract][Full Text] [Related]
5. Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters. Prapaiwatcharapan K; Sunphorka S; Kuchonthara P; Kangvansaichol K; Hinchiranan N Bioresour Technol; 2015 Sep; 191():426-32. PubMed ID: 25913031 [TBL] [Abstract][Full Text] [Related]
6. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Oct; 170():20-29. PubMed ID: 25118149 [TBL] [Abstract][Full Text] [Related]
7. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
8. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Dec; 174():212-21. PubMed ID: 25463802 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal liquefaction of Nostoc ellipsosporum biomass grown in municipal wastewater under optimized conditions for bio-oil production. Devi TE; Parthiban R Bioresour Technol; 2020 Nov; 316():123943. PubMed ID: 32750639 [TBL] [Abstract][Full Text] [Related]
11. Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Zhang W; Li J; Liu T; Leng S; Yang L; Peng H; Jiang S; Zhou W; Leng L; Li H Bioresour Technol; 2021 Dec; 342():126011. PubMed ID: 34852447 [TBL] [Abstract][Full Text] [Related]
12. A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp. Hietala DC; Faeth JL; Savage PE Bioresour Technol; 2016 Aug; 214():102-111. PubMed ID: 27128195 [TBL] [Abstract][Full Text] [Related]
13. Ni-Ru/CeO Xu D; Guo S; Liu L; Hua H; Guo Y; Wang S; Jing Z Biomed Res Int; 2018; 2018():8376127. PubMed ID: 29854797 [TBL] [Abstract][Full Text] [Related]
14. Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. Li H; Wang M; Wang X; Zhang Y; Lu H; Duan N; Li B; Zhang D; Dong T; Liu Z Sci Total Environ; 2018 Sep; 635():70-77. PubMed ID: 29660729 [TBL] [Abstract][Full Text] [Related]
15. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies. Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809 [TBL] [Abstract][Full Text] [Related]
16. Technical issues in the large-scale hydrothermal liquefaction of microalgal biomass to biocrude. Lee A; Lewis D; Kalaitzidis T; Ashman P Curr Opin Biotechnol; 2016 Apr; 38():85-9. PubMed ID: 26874260 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Muppaneni T; Reddy HK; Selvaratnam T; Dandamudi KPR; Dungan B; Nirmalakhandan N; Schaub T; Omar Holguin F; Voorhies W; Lammers P; Deng S Bioresour Technol; 2017 Jan; 223():91-97. PubMed ID: 27788432 [TBL] [Abstract][Full Text] [Related]
18. Influence of strain-specific parameters on hydrothermal liquefaction of microalgae. López Barreiro D; Zamalloa C; Boon N; Vyverman W; Ronsse F; Brilman W; Prins W Bioresour Technol; 2013 Oct; 146():463-471. PubMed ID: 23958678 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal co-liquefaction of microalgae, sugarcane bagasse, brewer's spent grain, and sludge from a paper recycling mill: Modeling and evaluation of biocrude and biochar yield. Bassoli SC; Sanson AL; Naves FL; Amaral MS J Environ Manage; 2024 Apr; 356():120626. PubMed ID: 38518491 [TBL] [Abstract][Full Text] [Related]
20. Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction. Sheehan JD; Savage PE Bioresour Technol; 2017 Sep; 239():144-150. PubMed ID: 28521223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]