These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38438341)
1. A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme. Hutton AE; Foster J; Crawshaw R; Hardy FJ; Johannissen LO; Lister TM; Gérard EF; Birch-Price Z; Obexer R; Hay S; Green AP Nat Commun; 2024 Mar; 15(1):1956. PubMed ID: 38438341 [TBL] [Abstract][Full Text] [Related]
2. Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction. Crawshaw R; Crossley AE; Johannissen L; Burke AJ; Hay S; Levy C; Baker D; Lovelock SL; Green AP Nat Chem; 2022 Mar; 14(3):313-320. PubMed ID: 34916595 [TBL] [Abstract][Full Text] [Related]
3. An efficient pyrrolysyl-tRNA synthetase for economical production of MeHis-containing enzymes. Hutton AE; Foster J; Sanders JEJ; Taylor CJ; Hoffmann SA; Cai Y; Lovelock SL; Green AP Faraday Discuss; 2024 Sep; 252(0):295-305. PubMed ID: 38847587 [TBL] [Abstract][Full Text] [Related]
4. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Burke AJ; Lovelock SL; Frese A; Crawshaw R; Ortmayer M; Dunstan M; Levy C; Green AP Nature; 2019 Jun; 570(7760):219-223. PubMed ID: 31132786 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic insights and the role of cocatalysts in Aza-Morita-Baylis-hillman and Morita-Baylis-Hillman reactions. Roy D; Patel C; Sunoj RB J Org Chem; 2009 Sep; 74(18):6936-43. PubMed ID: 19697897 [TBL] [Abstract][Full Text] [Related]
6. How Does Replacement of the Axial Histidine Ligand in Cytochrome Lee CWZ; Mubarak MQE; Green AP; de Visser SP Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992593 [TBL] [Abstract][Full Text] [Related]
7. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. Denesyuk A; Dimitriou PS; Johnson MS; Nakayama T; Denessiouk K PLoS One; 2020; 15(2):e0229376. PubMed ID: 32084230 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric Morita-Baylis-Hillman Reaction: Catalyst Development and Mechanistic Insights Based on Mass Spectrometric Back-Reaction Screening. Isenegger PG; Bächle F; Pfaltz A Chemistry; 2016 Dec; 22(49):17595-17599. PubMed ID: 27775188 [TBL] [Abstract][Full Text] [Related]
9. Brønsted acid catalyzed Morita-Baylis-Hillman reaction: a new mechanistic view for thioureas revealed by ESI-MS(/MS) monitoring and DFT calculations. Amarante GW; Benassi M; Milagre HM; Braga AA; Maseras F; Eberlin MN; Coelho F Chemistry; 2009 Nov; 15(45):12460-9. PubMed ID: 19813234 [TBL] [Abstract][Full Text] [Related]
10. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives. Juma WP; Nyoni D; Brady D; Bode ML Chembiochem; 2022 Apr; 23(7):e202100527. PubMed ID: 34822736 [TBL] [Abstract][Full Text] [Related]
11. Recent extensions of the Morita-Baylis-Hillman reaction. Ma GN; Jiang JJ; Shi M; Wei Y Chem Commun (Camb); 2009 Oct; (37):5496-514. PubMed ID: 19753340 [TBL] [Abstract][Full Text] [Related]
12. γ-enolase (ENO2) is methylated at the Nτ position of His-190 among enolase isozymes. Kasai F; Kako K; Maruhashi S; Uetake T; Yao Y; Daitoku H; Fukamizu A J Biochem; 2023 Jul; 174(3):279-289. PubMed ID: 37279646 [TBL] [Abstract][Full Text] [Related]
13. Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. Pfeiffer M; Crean RM; Moreira C; Parracino A; Oberdorfer G; Brecker L; Hammerschmidt F; Kamerlin SCL; Nidetzky B ACS Catal; 2022 Mar; 12(6):3357-3370. PubMed ID: 35356705 [TBL] [Abstract][Full Text] [Related]
14. Transition Path Sampling Study of Engineered Enzymes That Catalyze the Morita-Baylis-Hillman Reaction: Why Is Enzyme Design so Difficult? Balasubramani SG; Korchagina K; Schwartz S J Chem Inf Model; 2024 Mar; 64(6):2101-2111. PubMed ID: 38451822 [TBL] [Abstract][Full Text] [Related]
15. Computational design of enone-binding proteins with catalytic activity for the Morita-Baylis-Hillman reaction. Bjelic S; Nivón LG; Çelebi-Ölçüm N; Kiss G; Rosewall CF; Lovick HM; Ingalls EL; Gallaher JL; Seetharaman J; Lew S; Montelione GT; Hunt JF; Michael FE; Houk KN; Baker D ACS Chem Biol; 2013 Apr; 8(4):749-57. PubMed ID: 23330600 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles. Stewart JD; Roberts VA; Thomas NR; Getzoff ED; Benkovic SJ Biochemistry; 1994 Mar; 33(8):1994-2003. PubMed ID: 8117656 [TBL] [Abstract][Full Text] [Related]
17. Silver/ThioClickFerrophos-Catalyzed 1,3-Dipolar Cycloaddition and Tandem Addition-Elimination Reaction of Morita-Baylis-Hillman Adducts. Suzuki Y; Kanemoto K; Inoue A; Imae K; Fukuzawa SI J Org Chem; 2021 Nov; 86(21):14586-14596. PubMed ID: 34661412 [TBL] [Abstract][Full Text] [Related]
18. The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart. Masson G; Housseman C; Zhu J Angew Chem Int Ed Engl; 2007; 46(25):4614-28. PubMed ID: 17397122 [TBL] [Abstract][Full Text] [Related]
19. A unified mechanistic view on the Morita-Baylis-Hillman reaction: computational and experimental investigations. Cantillo D; Kappe CO J Org Chem; 2010 Dec; 75(24):8615-26. PubMed ID: 21082843 [TBL] [Abstract][Full Text] [Related]