These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38438973)
1. Bioconversion of α-Chitin by a Lytic Polysaccharide Monooxygenase Zhao H; Su H; Sun J; Dong H; Mao X J Agric Food Chem; 2024 Apr; 72(13):7256-7265. PubMed ID: 38438973 [TBL] [Abstract][Full Text] [Related]
2. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens. Nakagawa YS; Eijsink VG; Totani K; Vaaje-Kolstad G J Agric Food Chem; 2013 Nov; 61(46):11061-6. PubMed ID: 24168426 [TBL] [Abstract][Full Text] [Related]
3. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. Paspaliari DK; Loose JS; Larsen MH; Vaaje-Kolstad G FEBS J; 2015 Mar; 282(5):921-36. PubMed ID: 25565565 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Four Chitin-Active Lytic Polysaccharide Monooxygenases from Nakagawa YS; Kudo M; Onodera R; Ang LZP; Watanabe T; Totani K; Eijsink VGH; Vaaje-Kolstad G J Agric Food Chem; 2020 Nov; 68(47):13641-13650. PubMed ID: 33151668 [TBL] [Abstract][Full Text] [Related]
5. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase. Hamre AG; Eide KB; Wold HH; Sørlie M Carbohydr Res; 2015 Apr; 407():166-9. PubMed ID: 25812992 [TBL] [Abstract][Full Text] [Related]
6. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting α- and β-chitin. Nakagawa YS; Kudo M; Loose JS; Ishikawa T; Totani K; Eijsink VG; Vaaje-Kolstad G FEBS J; 2015 Mar; 282(6):1065-79. PubMed ID: 25605134 [TBL] [Abstract][Full Text] [Related]
8. Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. Mutahir Z; Mekasha S; Loose JSM; Abbas F; Vaaje-Kolstad G; Eijsink VGH; Forsberg Z FEBS Lett; 2018 Aug; 592(15):2562-2571. PubMed ID: 29993123 [TBL] [Abstract][Full Text] [Related]
9. Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity. Hamre AG; Strømnes AS; Gustavsen D; Vaaje-Kolstad G; Eijsink VGH; Sørlie M Carbohydr Res; 2019 Feb; 473():66-71. PubMed ID: 30640029 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional characterization of a small chitin-active lytic polysaccharide monooxygenase domain of a multi-modular chitinase from Jonesia denitrificans. Mekasha S; Forsberg Z; Dalhus B; Bacik JP; Choudhary S; Schmidt-Dannert C; Vaaje-Kolstad G; Eijsink VG FEBS Lett; 2016 Jan; 590(1):34-42. PubMed ID: 26763108 [TBL] [Abstract][Full Text] [Related]
11. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882 [TBL] [Abstract][Full Text] [Related]
12. The Fish Pathogen Aliivibrio salmonicida LFI1238 Can Degrade and Metabolize Chitin despite Gene Disruption in the Chitinolytic Pathway. Skåne A; Minniti G; Loose JSM; Mekasha S; Bissaro B; Mathiesen G; Arntzen MØ; Vaaje-Kolstad G Appl Environ Microbiol; 2021 Sep; 87(19):e0052921. PubMed ID: 34319813 [TBL] [Abstract][Full Text] [Related]
13. Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Moon C; Seo DJ; Song YS; Hong SH; Choi SH; Jung WJ Microb Pathog; 2017 Dec; 113():218-224. PubMed ID: 29074434 [TBL] [Abstract][Full Text] [Related]
14. Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from Li F; Zhao H; Liu Y; Zhang J; Yu H Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613716 [TBL] [Abstract][Full Text] [Related]
15. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252 [TBL] [Abstract][Full Text] [Related]
17. Kinetic insights into the role of the reductant in H Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757 [TBL] [Abstract][Full Text] [Related]
18. The Yao RA; Reyre J-L; Tamburrini KC; Haon M; Tranquet O; Nalubothula A; Mukherjee S; Le Gall S; Grisel S; Longhi S; Madhuprakash J; Bissaro B; Berrin J-G Appl Environ Microbiol; 2023 Oct; 89(10):e0057323. PubMed ID: 37702503 [TBL] [Abstract][Full Text] [Related]
19. Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Kommedal EG; Sæther F; Hahn T; Eijsink VGH Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2204510119. PubMed ID: 35969781 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Støpamo FG; Røhr ÅK; Mekasha S; Petrović DM; Várnai A; Eijsink VGH J Biol Chem; 2021 Dec; 297(6):101421. PubMed ID: 34798071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]