These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 38439049)

  • 1. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus.
    Chen C; Wu S; Sun Y; Zhou J; Chen Y; Zhang J; Birchler JA; Han F; Yang N; Su H
    Genome Biol; 2024 Mar; 25(1):63. PubMed ID: 38439049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing the origins and the biogeography of species' genomes in the highly reticulate allopolyploid-rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches.
    Díaz-Pérez A; López-Álvarez D; Sancho R; Catalán P
    Mol Phylogenet Evol; 2018 Oct; 127():256-271. PubMed ID: 29879468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons.
    Qi LL; Wu JJ; Friebe B; Qian C; Gu YQ; Fu DL; Gill BS
    Chromosome Res; 2013 Aug; 21(5):507-21. PubMed ID: 23955173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple founder events explain the genetic diversity and structure of the model allopolyploid grass Brachypodium hybridum in the Iberian Peninsula hotspot.
    Shiposha V; Marques I; López-Alvarez D; Manzaneda AJ; Hernandez P; Olonova M; Catalán P
    Ann Bot; 2020 Mar; 125(4):625-638. PubMed ID: 31630169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus.
    Li Y; Zuo S; Zhang Z; Li Z; Han J; Chu Z; Hasterok R; Wang K
    Plant J; 2018 Mar; 93(6):1088-1101. PubMed ID: 29381236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice.
    Qi L; Friebe B; Wu J; Gu Y; Qian C; Gill BS
    Funct Integr Genomics; 2010 Nov; 10(4):477-92. PubMed ID: 20842403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Brachypodium genomes with genome-wide optical maps.
    Zhu T; Hu Z; Rodriguez JC; Deal KR; Dvorak J; Vogel JP; Liu Z; Luo MC
    Genome; 2018 Aug; 61(8):559-565. PubMed ID: 29883550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids.
    Wang GX; He QY; Zhao H; Cai ZX; Guo N; Zong M; Han S; Liu F; Jin WW
    Chromosoma; 2019 Jun; 128(2):119-131. PubMed ID: 30993455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recreating Stable Brachypodium hybridum Allotetraploids by Uniting the Divergent Genomes of B. distachyon and B. stacei.
    Dinh Thi VH; Coriton O; Le Clainche I; Arnaud D; Gordon SP; Linc G; Catalan P; Hasterok R; Vogel JP; Jahier J; Chalhoub B
    PLoS One; 2016; 11(12):e0167171. PubMed ID: 27936041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton.
    Han J; Masonbrink RE; Shan W; Song F; Zhang J; Yu W; Wang K; Wu Y; Tang H; Wendel JF; Wang K
    Plant J; 2016 Dec; 88(6):992-1005. PubMed ID: 27539015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid Brachypodium.
    Scarlett VT; Lovell JT; Shao M; Phillips J; Shu S; Lusinska J; Goodstein DM; Jenkins J; Grimwood J; Barry K; Chalhoub B; Schmutz J; Hasterok R; Catalán P; Vogel JP
    Genetics; 2023 Feb; 223(2):. PubMed ID: 36218464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum.
    Lusinska J; Majka J; Betekhtin A; Susek K; Wolny E; Hasterok R
    Ann Bot; 2018 Aug; 122(3):445-459. PubMed ID: 29893795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of centromeres and telomeres at interphase varies among Brachypodium species.
    Idziak D; Robaszkiewicz E; Hasterok R
    J Exp Bot; 2015 Nov; 66(21):6623-34. PubMed ID: 26208647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors.
    Gordon SP; Contreras-Moreira B; Levy JJ; Djamei A; Czedik-Eysenberg A; Tartaglio VS; Session A; Martin J; Cartwright A; Katz A; Singan VR; Goltsman E; Barry K; Dinh-Thi VH; Chalhoub B; Diaz-Perez A; Sancho R; Lusinska J; Wolny E; Nibau C; Doonan JH; Mur LAJ; Plott C; Jenkins J; Hazen SP; Lee SJ; Shu S; Goodstein D; Rokhsar D; Schmutz J; Hasterok R; Catalan P; Vogel JP
    Nat Commun; 2020 Jul; 11(1):3670. PubMed ID: 32728126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing the Evolution of Brachypodium Genomes Using Comparative Chromosome Painting.
    Betekhtin A; Jenkins G; Hasterok R
    PLoS One; 2014; 9(12):e115108. PubMed ID: 25493646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide expansion and reorganization during grass evolution: from 30 Mb chromosomes in rice and Brachypodium to 550 Mb in Avena.
    Liu Q; Ye L; Li M; Wang Z; Xiong G; Ye Y; Tu T; Schwarzacher T; Heslop-Harrison JSP
    BMC Plant Biol; 2023 Dec; 23(1):627. PubMed ID: 38062402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum.
    Borowska-Zuchowska N; Kovarik A; Robaszkiewicz E; Tuna M; Tuna GS; Gordon S; Vogel JP; Hasterok R
    Plant J; 2020 Aug; 103(5):1810-1825. PubMed ID: 32506573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives.
    Gent JI; Wang N; Dawe RK
    Genome Biol; 2017 Jun; 18(1):121. PubMed ID: 28637491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
    Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J
    Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.
    Wolfgruber TK; Sharma A; Schneider KL; Albert PS; Koo DH; Shi J; Gao Z; Han F; Lee H; Xu R; Allison J; Birchler JA; Jiang J; Dawe RK; Presting GG
    PLoS Genet; 2009 Nov; 5(11):e1000743. PubMed ID: 19956743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.